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Abstract

It is known that the balance laws of hyperelasticity (Green elasticity), i.e., conservation of mass and
balance of linear and angular momenta, can be derived using the first law of thermodynamics by postulating
its invariance under rigid body motions of the Euclidean ambient space—the Green-Naghdi-Rivlin theorem.
In the case of a non-Euclidean ambient space, covariance of the energy balance—its invariance under arbitrary
diffeomorphisms of the ambient space—gives all the balance laws and the Doyle-Ericksen formula—the
Marsden-Hughes theorem. In this note, we show that the constitutive equations as well as the balance laws
of hyperelasticity can be derived using the first and second laws of thermodynamics without assuming any
invariance.
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1 Introduction

In nonlinear hyperelasticity, one can derive all the balance laws by starting from an energy balance (the first
law of thermodynamics) and postulating its invariance under rigid body motions of the ambient space. This
idea is due to Green and Rivlin [1964]1 in the context of Euclidean ambient spaces (Green-Naghdi-Rivlin
theorem) and was subsequently expanded to hyperelasticity (Green elasticity) with Riemannian ambient space
manifolds by Hughes and Marsden [1977] who postulated the invariance of the balance of energy under arbitrary
diffeomorphisms of the ambient space—covariance of the energy balance. Hughes and Marsden [1977] showed
that covariance of the energy balance gives all the balance laws of hyperelasticity and the Doyle-Ericksen
formula [Doyle and Ericksen, 1956]. See also [Marsden and Hughes, 1983; Simo and Marsden, 1984; Yavari
et al., 2006; Yavari and Ozakin, 2008; Yavari, 2008; Yavari and Marsden, 2009a,b; Yavari, 2010; Yavari and
Golgoon, 2019]. In this note, as an extension to the classical Coleman and Noll [1963] procedure, we show that
instead of using the first law of thermodynamics and its covariance, one can use the first and the second laws
of thermodynamics to derive not only the hyperelastic constitutive equations but also all the balance laws of
hyperelasticity—effectively, the second law (in the form of the Clausius-Duhem inequality) places restrictions
on the first law (balance of energy) and yields the constitutive equations and the balance laws of nonlinear
hyperelasticity.

∗Corresponding author, e-mail: arash.yavari@ce.gatech.edu
1A different version of this theorem is due to Noll [1963]. See [Marsden and Hughes, 1983] for more details.
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2 Kinematics of Finite Deformations

Consider a hyperelastic solid body B represented by an embedded 3-submanifold B within the ambient space
S.2 Motion of the body B is represented by a time-parametrized family of maps φt : B → Ct ⊂ S , mapping the
reference (material) configuration B of the body to its current (spatial) configuration Ct = φt(B) . We adopt
the following standard convention: objects and indices are denoted by uppercase characters in the material
manifold B (e.g., X ∈ B), and by lowercase characters in the spatial manifold S (e.g., x = φt(X) ∈ φt(B)). We
consider local coordinate charts on B and S denoted by {XA} and {xa}, respectively. The corresponding local
coordinate bases are denoted by {∂A = ∂

∂XA } and {∂a = ∂
∂xa }, and their respective dual bases are {dXA} and

{dxa} . We also adopt Einstein’s repeated index summation convention, e.g., uivi :=
∑

i u
ivi .

The ambient space has a background metric g = gab dx
a ⊗ dxb . Given vectors u ,w ∈ TxS, their dot

product is denoted by ⟨⟨u,w⟩⟩g = ua wb gab. Given a vector u ∈ TxS and a 1-form ω ∈ T ∗
xS, their natural

pairing is denoted by ⟨ω,u⟩ = ω(u) = ωa u
a. The spatial volume form is dv =

√
detg dx1 ∧ dx2 ∧ dx3. The

Levi-Civita connection of (S,g) is denoted by ∇g, with Christoffel symbols γa
bc. The metric g of S induces

the metric G on B by which the natural distances in the body before deformation are calculated. Given vectors
U ,W ∈ TXB, their dot product is denoted by ⟨⟨U,W⟩⟩G = UA WB GAB . Given a vector U ∈ TXB and a
1-form Ω ∈ T ∗

XB, their natural pairing is denoted by ⟨Ω,U⟩ = Ω(U) = ΩA UA. The material volume form

is dV =
√
detG dX1 ∧ dX2 ∧ dX3. The Levi-Civita connection of (B,G) is denoted by ∇G , with Christoffel

symbols ΓA
BC .

As a measure of strain in elastic solids, we typically use the derivative of the deformation mapping—known as
the deformation gradient—denoted by F(X, t) = Tφt(X) : TXB → Tφt(X)Ct ; in components it reads as Fa

A =
∂φa

∂XA . The dual F⋆ of F is defined as F⋆(X, t) : Tφt(X)Ct → TXB , ⟨α,FU⟩ = ⟨F⋆α,U⟩ , ∀U ∈ TXB , ∀α ∈
T ∗
φ(X)S ; it has components (F⋆)A

a
= Fa

A . The transpose FT of F is defined as FT(X, t) : Tφt(X)Ct → TXB ,

⟨⟨FU,u⟩⟩g = ⟨⟨U,FTu⟩⟩G , ∀U ∈ TXB , ∀u ∈ Tφ(X)S ; in components it reads as
(
FT

)A
a
= GAB Fb

B gba . Note

that FT = G♯F⋆g , where (.)♯ denotes the musical isomorphism for raising indices. The right Cauchy–Green
deformation tensor is defined as C := FTF . Denoting by (.)♭ the musical isomorphism for lowering indices,
one finds that C♭ corresponds to the pull-back of the spatial metric g by φ, i.e., C♭ = φ∗g = F⋆gF . The
Jacobian of the motion relates the material and spatial volume elements as dv = JdV , and it can be shown
that J =

√
detC =

√
detg/detG detF .

The material velocity of the motion is defined as V : B × R+ → TS ,V(X, t) := ∂φ(X,t)
∂t ; it has components

Va = ∂φa

∂t . The spatial velocity is defined as v : φt(B)× R+ → TS , v(x, t) := V(φ−1
t (x), t) . The material

acceleration of the motion is defined as A : B × R+ → TS , A(X, t) := Dg
t V(X, t) , where Dg

t denotes the co-
variant derivative along φX : t 7→ φ(X, t) ; it reads in components as Aa = ∂Va

∂t + γa
bc V

b Vc . The spatial

acceleration of the motion is defined as a : φt(B)×R+ → TS , a(x, t) := A(φ−1
t (x), t) ∈ TxS ; it has components

aa = ∂va

∂t + ∂va

∂xb v
b + γa

bc v
b vc .

3 Thermodynamics and the Balance Laws of Hyperelasticity

In this section, we first briefly review the first and second laws of thermodynamics in the setting of nonlinear
hyperelasticity. We then show how all the balance laws of hyperelasticity can be derived assuming the first and
second laws of thermodynamics without assuming any invariance.

3.1 First Law of Thermodynamics

The first law of thermodynamics posits the existence of an internal energy E as a state function, which satisfies
the following balance equation as an expression of the conservation of energy principle [Truesdell, 1952; Gurtin,
1974; Marsden and Hughes, 1983]

d

dt

∫
U
ρ0

Å
E +

1

2
∥V∥2g

ã
dV =

∫
U
ρ0
Ä
⟨⟨B,V⟩⟩g +R

ä
dV +

∫
∂U

Ä
⟨⟨T,V⟩⟩g +H

ä
dA , (3.1)

2For most applications the ambient space is the three-dimensional Euclidean space, i.e., S = R3. However, in general, the
ambient space may be curved, e.g., in modeling the dynamics of fluid membranes [Arroyo and DeSimone, 2009]. See [Yavari et al.,
2016] for a general framework on elasticity in evolving ambient spaces.
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for any open set U ⊂ B , where E stands for the specific internal energy, ρ0 is the material mass density, B is the
specific body force, T is the boundary traction vector field per unit material area, R = R(X, t) is the specific
heat supply, and H = −⟨⟨Q,N⟩⟩G is the heat flux across a material surface where Q = Q(X,T, dT,C♭,G)
represents the external heat flux per unit material area, T is temperature, dT is its exterior derivative, and N
is the G-unit normal to the boundary ∂U . Expressed in localized form, the energy balance (3.1) is written as

ρ0 Ė = S : (
s

D+
a

D)−DivQ+ ρ0R+ ⟨⟨DivP+ ρ(B−A),V⟩⟩g − ρ̇0

Å
E +

1

2
∥V∥2g

ã
. (3.2)

In the local form of the balance of energy (3.2) a dotted quantity denotes its total time derivative, P is the first
Piola-Kirchhoff stress tensor such that the traction vector is T = PN , S = F−1P is the second Piola-Kirchhoff

stress tensor, and the relation P :∇V = S :
s

D+ S :
a

D has been used where

s

D =
1

2
[F⋆(∇V)F+ F⋆(∇V)⋆ F] =

1

2
Ċ♭ ,

a

D =
1

2
[F⋆(∇V)F− F⋆(∇V)⋆ F] . (3.3)

s

D = 1
2Ċ

♭ is the material rate of deformation tensor. It should be noted that at this stage we do not assume the
symmetry of S.3

3.2 Second Law of Thermodynamics

The second law of thermodynamics posits the existence of entropy N as a state function, which satisfies the
following inequality—known as the Clausius-Duhem inequality—as an expression of the principle of entropy
production,4 which steadily increases or remains constant within a closed system over time [Truesdell, 1952;
Gurtin, 1974; Marsden and Hughes, 1983]

d

dt

∫
U
ρ0N dV ≥

∫
U
ρ0

R

T
dV +

∫
∂U

H

T
dA , (3.4)

for any open set U ⊂ B , where N denotes the specific entropy. In localized form, the material Clausius-Duhem
inequality (3.4) reads

η̇ = ρ0T ˙N + ρ̇0TN +DivQ− ρ0R− 1

T
⟨dT,Q⟩ ≥ 0 , (3.5)

where η̇ denotes the material rate of energy dissipation density, and dT is the exterior derivative of T (in
components, ⟨dT,Q⟩ = ∂T

∂XA QA).

3.3 Balance Laws of Nonlinear Hyperelasticity

The specific free energy Ψ = Ψ̂(X,T,C♭,G) is the Legendre transform of the specific internal energy E with
respect to the conjugate variables temperature T and specific entropy N , i.e.,

Ψ = E − TN , (3.6)

such that E = Ê (X,N ,C♭,G) . Thus

N = −∂Ψ

∂T
. (3.7)

Proposition 3.1. For a hyperelastic body, the first and second laws of thermodynamics (3.2),(3.5) imply that

P = 2ρ0F
∂Ψ̂

∂C♭
,

DivP+ ρ0B = ρ0A ,

ρ̇0 = 0 ,

η̇ = − 1

Θ
⟨dΘ,Q⟩ ≥ 0 .

(3.8)

(3.9)

(3.10)

(3.11)

3We thank Sanjay Govindjee for bringing this to our attention.
4The entropy production for an open subset U in the body reads as

Γ =
d

dt

∫
U
ρ0N dV −

∫
U
ρ0

R

T
dV −

∫
∂U

H

T
dA .
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In other words, the first and second laws of thermodynamics imply the Doyle-Ericksen formula (3.8)—and
consequently the balance of angular momentum,5 the balance of linear momentum (3.9), and the conservation
of mass (3.10).

Proof. From (3.6), ρ0T ˙N = ρ0Ė − ρ0Ψ̇− ρ0ṪN . Substituting this relation and (3.2) into (3.5) one obtains

η̇ = S : (
s

D+
a

D)−ρ0Ψ̇−ρ0ṪN + ρ̇0TN + ⟨⟨DivP+ρ(B−A),V⟩⟩g− ρ̇0

Å
E +

1

2
∥V∥2g

ã
− 1

T
⟨dT,Q⟩ ≥ 0 . (3.12)

Note that

Ψ̇ =
∂Ψ

∂T
Ṫ +

∂Ψ

∂C♭
:Ċ♭ = −N Ṫ + 2

∂Ψ

∂C♭
:

s

D . (3.13)

Substituting this into (3.12), the rate of dissipation is simplified to read

η̇ =

ï
S− 2ρ0

∂Ψ

∂C♭

ò
:

s

D+ S :
a

D+ ⟨⟨DivP+ ρ(B−A),V⟩⟩g − ρ̇0

Å
Ψ+

1

2
∥V∥2g

ã
− 1

T
⟨dT,Q⟩ ≥ 0 . (3.14)

This inequality must hold for all motions. As
s

D (a symmetric tensor) and
a

D (an antisymmetric tensor) can
be varied independently of all the other fields, one concludes that

S = 2ρ0
∂Ψ̂

∂C♭
, S⋆ = S . (3.15)

Note that as soon as the first relation (the Doyle-Ericksen formula) holds the second relation (balance of angular
momentum) is trivially satisfied. Now the rate of dissipation is simplified to read

η̇ = ⟨⟨DivP+ ρ(B−A),V⟩⟩g − ρ̇0

Å
Ψ+

1

2
∥V∥2g

ã
− 1

T
⟨dT,Q⟩ ≥ 0 . (3.16)

One can vary the velocity vector while its norm ∥V∥g is fixed. This implies that the inequality (3.16) can hold
only if

DivP+ ρ0B = ρ0A . (3.17)

Now the rate of dissipation takes the following form

η̇ = −ρ̇0

Å
Ψ+

1

2
∥V∥2g

ã
− 1

T
⟨dT,Q⟩ ≥ 0 . (3.18)

Notice that adding an arbitrary constant to a free energy is thermodynamically inconsequential. This implies
that the inequality (3.18) must be invariant under the transformations Ψ → Ψ+ a, ∀ a ∈ R. This implies that
ρ̇0 = 0 and η̇ = − 1

T ⟨dT,Q⟩ ≥ 0.

Remark 3.1. For an incompressible hyperelastic solid, the Legendre transform (3.6) is modified to take into
account the constraint of volume preservation J = 1 on motions as follows

Ψ− p(J − 1) = E − TN , (3.19)

where p(X, t) is the Lagrange multiplier associated with the incompressibiity constraint. Consequently, since
J̇ = 1

2JC
−♯ :Ċ♭ , the Doyle-Ericksen formula (3.8) is modified to read

P = 2ρ0F
∂Ψ̂

∂C♭
− pg♯F−⋆ . (3.20)
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5Using the symmetry of the right Cauchy-Green deformation tensor (i.e., C⋆ = C ) in the Doyle-Ericksen formula yields the

balance of linear momentum P⋆F−⋆ = F−1P, which is equivalent to FP⋆ = PF
⋆
, i.e., symmetry of the Cauchy stress.
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