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Abstract

In this paper, we formulate a theory for the coupling of accretion mechanics and thermoelasticity.
We present an analytical formulation of the thermoelastic accretion of an infinite cylinder and of a two-
dimensional block. We develop a numerical scheme for the solution of these two problems, and numerically
calculate residual stresses and observe a strong dependence of the final mechanical state on the parameters
of the accretion process. This suggests the possibility to predict and control thermal accretion processes of
soft materials by manipulating thermal parameters, and therefore, to realize additively-manufactured soft
objects with the desired characteristics and performances.
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1 Introduction

Accretion is the growth of a deformable solid by the gradual addition of material on its boundary. Unlike in
bulk growth, where the material points are preserved, the set of material points in accretion problems is time
dependent. We refer by thermal accretion to the class of processes and phenomena where thermal effects cannot
be neglected in the characterization of the final accreted body, or where the growth process itself is driven by the
temperature field through a change of phase. Additive manufacturing and solidification are important examples
of thermal accretion. In order to formulate a thermoelastic accretion model, one needs to couple thermoelasticty
and accretion mechanics.

Additive manufacturing, most commonly known as 3D printing, is unarguably a central part of what seems
to be a revolutionary era in manufacturing and it is playing an ever increasing role in our everyday lives. It
has already found many applications ranging from hobbyist art to precise manufacturing in various industries
such as mechanical, aerospace, and medical [Gu et al., 2012; Horn and Harrysson, 2012; Huang et al., 2013].
Additive manufacturing was initially introduced in the 1980s for rapid prototyping. However, given its high
efficiency, flexibility, and the mass customization possibilities, it was further developed for precise on-demand
manufacturing and is now even considered a viable alternative to traditional manufacturing technologies [Levy
et al., 2003; Frazier, 2010; Horn and Harrysson, 2012; Gu et al., 2012]. Additive manufacturing is further regarded
as the pioneering production/manufacturing technology for “The Third Industrial Revolution” [Rifkin, 2011;
Weller et al., 2015]. Despite its tremendous potential and commercial success, many challenges have yet to
be overcome before additive manufacturing can be fully integrated in industry [Gu et al., 2012; Gibson et al.,
2014; Frazier, 2014; Bikas et al., 2016]. From a mechanics point of view, understanding and being able to
predict and control the residual stresses is crucial in order to tailor and design the process in such a way that
the manufactured piece meets the required properties in its working conditions. As a matter of fact, the high
temperatures and natural cooling that a piece undergoes during the additive manufacturing process causes large
strains and can result in a high level of residual stresses [Shiomi et al., 2004; Mercelis and Kruth, 2006; Thompson
et al., 2015; Shamsaei et al., 2015]. This may lead to severe part distortion, dimensional inaccuracies, and even
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cracks in the final manufactured piece [Klingbeil et al., 2002; Dadbakhsh et al., 2012; Denlinger et al., 2015;
Denlinger and Michaleris, 2017]. Such conditions put the additive manufacturing problem beyond the scope
of the application of linearized elasticity. However, to the best of our knowledge, most of the existing works
on additive manufacturing in the literature are based on linearized elasticity and/or are purely computational
[Matsumoto et al., 2002; Ghosh and Choi, 2005; Zaeh and Branner, 2010; Michaleris, 2014; Li and Gu, 2014;
Hodge et al., 2014; Loh et al., 2015; Hodge et al., 2016; Li et al., 2016; Bikas et al., 2016; Fergani et al., 2017;
de La Batut et al., 2017].

The other main example of thermal accretion is the processes in which the material experiences a phase
change (solidification) of the melt pool as it becomes part of the growing body. To this extent additive manu-
facturing technologies can be seen as a particular case of solidification, as new layers of material are deposited
atop of old ones and fused together by melting the new material. In solidification problems, the growth surface
is a phase change interface, on which a Stefan condition is imposed (see [Richmond and Tien, 1971; Viskanta,
1988; Stefan, 1989; Hu and Argyropoulos, 1996; Schwerdtfeger et al., 1998; Hodge et al., 2014] and references
therein).

The formulation of the initial-boundary value problems of accretion processes and the mechanics of accre-
tion at finite strains is still at its infancy. Additive manufacturing advances are good motivations for building
a mathematical theory of the thermo-mechanics of accretion at finite strains that can be used in these new
technologies. Compared to bulk growth (see [Epstein and Maugin, 2000; Garikipati et al., 2004; Yavari, 2010]
and the book by Goriely [2017] summarizing the recent developments in bulk growth in biology), the mechanics
of accretion is much less developed mainly because of the complexities involved in modeling the kinematics
of accretion, especially for finite deformations, and the intrinsic incompatible nature of accreting bodies. Re-
cently, Tomassetti et al. [2016] modeled a spherically-symmetric accretion of a hollow spherical ball made of
an incompressible nonlinear elastic solid, coupling nonlinear elasticity, accretion and diffusion. A theory of
diffusive accretion has recently been presented in [Abi-Akl et al., 2019]. Swain and Gupta [2018] formulated the
thermodynamics of accretion by considering the diffusion of nutrients. In their formulation, the growth surface
is treated as an interface whose motion is coupled with the other degrees of freedom. In another recent work
on growth and accretion, Ganghoffer and Goda [2018] used configurational forces in the setting of irreversible
thermodynamics. In [Truskinovsky and Zurlo, 2019] the accretion-induced incompatibilities are studied. In
[Sozio and Yavari, 2017] a geometric theory of nonlinear accretion mechanics for symmetric surface growth of
cylindrical and spherical bodies was introduced. This theory was used for the analysis of several model prob-
lems. Sozio and Yavari [2019a] formulated a geometric nonlinear theory of the mechanics of accretion without
any symmetry assumptions. In this theory a body is represented by a time-dependent Riemannian manifold
with a time-independent metric that at each point depends on the state of deformation at that point at its
time of attachment to the body, and on the way the new material is added to the body. The accretion-induced
incompatibilities were studied by calculating the curvature of the material metric, and the initial-boundary value
problem of accretion was formulated. Some analytical results were provided for some special cases of accretion,
and several nonlinear accretion problems were solved numerically. In this paper, the theory of [Sozio and Yavari,
2017, 2019a] will be extended to take into account the thermal effects. It should be emphasized that our focus
in the present work is on the formulation of a geometric model that is able to take into account the attachment
of new particles to a solid undergoing finite deformations (accretion) together with the heat conduction and
thermal expansion effects; we do not consider phase transition phenomena or chemical reactions.

This paper is structured as follows. In §2 we formulate the coupling of nonlinear thermoelasticity with non-
linear accretion; we show how to build a material manifold taking into account thermal expansion/contraction
together with the incompatibilities arising from the addition of new material and encoding everything into the
material metric. In §3 we look at the radial thermo-accretion of an infinite cylinder under the assumption of
axi-symmetry. This is a one-dimensional problem that we solve using the finite difference method. In §4 we
consider the vertical growth of a two-dimensional block and solve it using an efficient discretization of a weak
formulation of the problem. Conclusions, some final comments, and a brief discussion of future work are given
in §5.
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2 Coupling of Thermoelasticity and Accretion

In this section we review some elements of nonlinear thermoelasticity and accretion mechanics. For more details
on geometric nonlinear elasticity see [Marsden and Hughes, 1983], on thermoelasticity [Ozakin and Yavari,
2010; Sadik and Yavari, 2017], and on nonlinear accretion mechanics [Sozio and Yavari, 2017, 2019a]. Let S
be the three-dimensional Euclidean ambient space, and g its usual scalar product. We indicate with Bt the
configuration representing the accreting body at time t. Once Bt is defined, our goal is to endow it with an a
priori unknown inner product G representing its fully relaxed state. Note that this state may not be realizable
in the physical three-dimensional Euclidean space, whence the presence of residual stresses. We denote by {XA}
and {xa} the local coordinates on Bt and S, respectively. ∇G and ∇g are the Levi-Civita connections of (Bt,G)
and (S, g), repectively. We denote their respective Christoffel symbols by ΓABC , and γabc in the local coordinate
charts {XA} and {xa}, respectively. We also adopt Einstein’s repeated index summation convention.

2.1 Kinematics of accretion

During an accretion process, the material manifold representing a growing body is not fixed in time. Indeed,
new material points are attached to the part of the boundary of the body called the growth surface. The growing
body is identified with a time-dependent three-dimensional manifold Bt. We assume that t = 0 corresponds
to the start of the growth process and tf to the end. In light of this discussion, an accreting body is modeled
as a connected S-embeddable 3-manifold M together with a smooth map τ : M → [0, tf ], called the time of
attachment map [Sozio and Yavari, 2019a]. The body at time t is represented by the set

Bt = {X ∈M | τ(X) ≤ t} ,

while the level surface Ωt = τ−1(t) is the aforementioned growth surface at time t. The motion of a body subject
to accretion is a time-dependent map with a time-dependent domain, i.e., a family of maps ϕt : Bt → S, with
t ∈ [0, tf ]. The so-called deformation gradient Ft is the derivative map of ϕt defined as Ft(X) = Tϕt(X) and is
a two-point tensor Ft(X) : TXB → Tϕt(X)S. The frozen deformation gradient is a two-point tensor F̄ defined
as F̄ (X) = Fτ(X)(X), recording the deformation gradient of each point X at its time of attachment τ(X). Note
that, in general, F̄ is not the tangent map of a deformation, i.e., it is not a deformation gradient. We indicate
with U the velocity of the material motion describing the evolution of the layers Ωt in time, representing the
growth velocity in the material manifold. Note however that the material motion is not unique; it can be shown
that there is some freedom in its choice within a class of material motions that leave the accretion initial-
boundary value problem unaltered [Sozio and Yavari, 2019a]. We denote the growth surface in the deformed
configuration by ωt = ϕt(Ωt), i.e., the part of the deformed boundary where material points are added. The
total velocity of the growth surface ω in the deformed configuration has two contributions: one due to accretion,
and one due to deformation. Its velocity w is called the total velocity, and can be written as w = F̄U + v.
The term F̄U represents the contribution of accretion, while v is the standard velocity of points as material
particles moving in the ambient space via ϕt.

We assume that at time t one can univocally identify a vector field ut on ωt called the growth velocity
that describes the rate and direction at which new material is being added. Alternatively, for every material
point X, we define a time-independent growth “velocity” u : B → TS by assigning to each point X the growth
velocity at its time of attachement to the body, i.e., u := uτ(X) ◦ ϕτ(X). Contrary to our intuition, F̄U and
u are two different objects, although there are some cases (such as traction-free growth surface) in which they
coincide [Sozio and Yavari, 2019a]. Note that the growth velocity u can be seen as a parameter of the additive
manufacturing process. Note also that we have assumed that the growth velocity is a given vector field on the
boundary of the deformed body. However, in a coupled theory of accretion it would be one of the unknown
fields.

2.2 The material metric

A material metric G is constructed to give at every time t an abstract material Riemannian manifold (Bt,G) ,
where the distances measured byG correspond to a fully relaxed state. Note that this state may not be realizable
in the physical three-dimensional Euclidean space but it is indeed realizable as an abstract Riemannian manifold.
The material metric explicitly depends on the history of loading during the surface growth process as well as
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the temperature field T = T (X, t) and the thermal expansion proprieties of the solid. In thermoelasticity, one
may write the material metric as [Ozakin and Yavari, 2010; Sadik and Yavari, 2017]1

G(X,T ) = eω
?(X,T )G0(X)eω(X,T ) . (1)

Here, ω = ω(X,T ) is a (1
1)-rank temperature-dependent tensor characterizing the thermal extension properties of

the solid. It depends on the thermal expansion characteristics of the material and is such that ω(X,T0(X)) = 0,
where T0(X) is a reference temperature field. Therefore, one has G0 = G(X,T0). In components, (1) reads

GAB = eω
CA (G0)CD e

ωDB . In the particular case of isotropic thermal expansion, the material metric reduces
to

G(X,T ) = e2ω(X,T )G0(X) ,

where ω = ω(X,T ) is a scalar, with ω(X,T0(X)) = 0. The coefficient of thermal expansion reads α(X,T ) =
∂ω(X,T )/∂T , so one has

ω(T ) =

∫ T

T0

α(η)dη . (2)

In thermal accretion, we choose the field T0 = T0(X) as the temperature at which the new material is added so
that G0 is a temperature-independent metric that depends only on the history of loading during the accretion
process. Note that when the material metric is written in the form (1), the thermoelasticity effects are fully
encoded in ω while the accretion and history of loading during growth are fully encoded in G0.

In order to calculate G0, we define the accretion tensor Q as the time-independent two-point tensor field
given by [Sozio and Yavari, 2019a]

Q = F̄ + (u− F̄U)⊗ dτ ,

which agrees with the frozen deformation gradient F̄ on each layer, and is such that QU = u. The accretion
tensor can be understood as the gradient of a mapping that takes a layer of material in the material manifold
and maps it to its current configuration right before attachment. For this reason, we define the material metric
on Bt as the pull-back of the Euclidean ambient metric g through Q, i.e., as

G0(X) = Q?(X) g(ϕ(X, τ(X)))Q(X) . (3)

In components, one has (G0)IJ = QiIgij Q
j
J . Plugging (1) into (3), one then obtains

G(X,T ) = eω
?(X,T )Q?(X) g(ϕ(X, τ(X)))Q(X) eω(X,T ) . (4)

When the growth surface is traction-free, one can show that if the energy function is rank-1 convex, then Q = F̄
[Sozio and Yavari, 2019a].2 Note that in this case F̄U = u, as QU = u by construction.

By virtue of (1), the Riemannian volume form for G in the isotropic case reads dV = etrωdV0, where dV0

is the Riemannian volume form for G0. The Jacobian J relates the material and spatial Riemannian volume
elements dV and dv as dv = JdV . It can be shown that

J =

√
det g

detG
detF =

detF

detQ
e− trω , (5)

where use was made of (4). Note that in the isotropic case one has etrω(X,T ) = e3ω(X,T ), or etrω(X,T ) = e2ω(X,T )

in 2D problems.
In the setting of nonlinear mechanics, incompatibility is quantified by either the curl of the accretion tensor

Q, or by the curvature of the material metric G. This is studied in [Sozio and Yavari, 2019a] when thermal
effects are ignored. In the present paper we do not focus on the study of incompatibility, which is implicitly
encoded in the tensor Q (or in some cases F̄ ).

1We denote by T ? the dual of the (11)-rank tensor T : operating on a 1-form λ, it contracts its upper index with λ, i.e.,
T ?λ = TBAλBdXA. It should not be confused with the adjoint operator T, cf. footnote 3.

2Rank-1 convexity allowed Sozio and Yavari [2019a] to use an energetic argument to show that the absence of in-layer deformation
and the vanishing of out-of-layer stress (tractions) imply F̄ = Q. Note that being an isometry, the accretion tensor Q represents
an undeformed state.
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2.3 Balance of mass

Let ρ and % respectively denote the material and spatial mass densities. Although mass conservation does not
hold globally for a body undergoing accretion, mass is locally conserved in the body away from the growth
surface. For any open set U in Bt, conservation of mass is written as∫

ϕt(U)

%dv =

∫
U
ρdV =

∫
U
ρ0 dV0 ,

where ρ0(X) is the material mass density at T = T0(X)—the temperature field corresponding to the stress-free
metric G0. Localizing the above equation gives the local form of mass conservation

ρ(X, t) = J(X, t)%(X, t) ,

where the material mass density ρ is related to the reference material mass density ρ0 via

ρ0(X) = etrω(X,T (X,t))ρ(X, t) , (6)

so that ρ0 = Jetrω%.

2.4 Stress tensors and the balance of linear momentum

The right Cauchy-Green deformation tensor is defined as C = F TF ;3 in components, CAB = GAKF aKgabF
b
B .

Note that C[ is the pull-back of the spatial metric g by ϕ, i.e., C[ = ϕ∗g, where [ denotes the flat operator
for lowering tensor indices. The left Cauchy-Green deformation tensor (also called Finger tensor) is defined as
b = FF T; in components, bab = F aAF

c
BG

ABgcb. Note that b] agrees with the push-forward of the inverse
material metric G] by ϕ, i.e., b] = ϕ∗G

], where ] denotes the sharp operator that is used for raising tensor
indices.

We assume that the body is made of a hyperelastic material, so that the constitutive model is given by
an energy function W = W̃(X,T,F , g,G) per unit undeformed volume, and the Cauchy and the first Piola-
Kirchhoff stress tensors are defined as

σ =
2

J

∂W̃
∂g

, P =
∂W̃
∂F

,

where Jσ = PF ?. If the material is incompressible, we have J = 1 and the Cauchy stress tensor is written as

σ = 2
∂W̃
∂g
− p g] , P =

∂W̃
∂F
− p g]F−? ,

where p is the Lagrange multiplier associated with the incompressibility constraint. For neo-Hookean incom-
pressible materials the energy density is written as

W̃(X,T,F , g,G) =
µ(T )

2
trC − p(J − 1)2 ,

where C and J depend on the temperature through the material metric G (see Appendix A). The Cauchy and
the first Piola-Kirchhoff stress tensors are expressed as

σ = µb] − pg] , P = µFG] − pg]F−? . (7)

We consider slow accretion processes. Ignoring the inertial term, the balance of linear momentum reads

divσ + %f = 0 , DivP + ρf = 0 , (8)

where div denotes the spatial divergence operator with respect to the metric g, Div the material divergence
operator with respect to the metrics g and G, and f denotes the body force per unit mass.

3We denote the adjoint of F by F T and it is defined such that g(FW ,w) = G(W ,F Tw) for any pair (W ,w) ∈ TXBt×Tϕt(X)S.

In components, (FT)Aa = gabF
b
BG

AB .
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2.5 The heat equation

Starting from the fundamental laws of thermodynamics, one can find the following generalized heat equation
[Dillon Jr, 1962; Sadik and Yavari, 2017]

DivH = −ρcE Ṫ +
1

2
T
∂S

∂T
:Ċ[ + ρR , (9)

where H is the material heat flux vector per unit area, cE denotes the specific heat capacity at constant strain,
and R is the external specific heat supply. For a thermally isotropic solid, the heat flux response function has
the following representation [Truesdell and Noll, 2004, p. 358]

H = (φ0C
−] + φ1G

] + φ2C
])dT ,

where dT = ∂T
∂XA dX

A, and φk = φk(X,T,dT,C,G), k = −1, 0, 1, are scalar functions. If we set K =

−(φ0C
−] + φ1G

] + φ2C
]), then by the reduced form of the Clausius-Duhem inequality 〈dT,H〉 ≤ 0,4 and

hence, K is a positive semi-definite symmetric material (2
0)-tensor (the heat conductivity tensor). One can

write a generalized version of the Fourier’s law of thermal conduction as H = −KdT . In our numerical
examples we consider the simple model K = KG], where K is the heat conduction coefficient, while we call
D = K

cEρ
the diffusivity coefficient. Therefore, the heat equation (9) is simplified to read5

Div
(
KG]dT

)
= ρcE Ṫ −

1

2
T
∂S

∂T
:Ċ[ − ρR . (10)

Unloaded disk

(S, g)
s(t1) + udt

ϕt1

Btf

ϕ̃

s(t1)

Bt1

s(tf )ϕtf

S(tf )

S(t1) + udt

S(t1)

R0

R0

R0

R0

Figure 1: Configurations of a radially-symmetric accreting hollow cylinder on a rigid substrate (inner disk in gray). Top two disks:
Material and deformed configurations at time t1, 0 < t1 < tf . Bottom left two disks: Material and deformed configurations at
the final time tf . Bottom right disk: When accretion is completed one unloads and lets the cylinder cool down. The result is a
residually-stressed configuration.

3 Accretion of a hollow cylinder

In this section, we present a simplified formulation of the thermoelastic problem for the radially-symmetric
accretion of an infinitely-long hollow cylinder (see Fig. 1). We assume that the material is initially added on

4In Appendix D we discuss the derivation of this inequality.
5Note that G]dT = GradT .
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the outer surface of a rigid and infinitely-long cylindrical substrate of radius R0 and that the growing cylinder
is sitting in an ambient temperature Ta. We assume that stress-free cylindrical layers of new material are
continuously and uniformly formed on the outer boundary of the cylinder at a temperature Tm—its melting
temperature—greater than Ta. The growth velocity is assumed to be normal to the growth surface and has
magnitude u(t). The added rings are made of the same homogeneous isotropic incompressible material, with a
uniform isotropic coefficient of thermal expansion α(T ), and a uniform isotropic coefficient of heat conduction
K(T ). Assuming an infinitely-long cylinder, the problem is reduced to studying a cross section of the cylinder,
i.e., the surface growth of a two-dimensional annulus. Let (R,Θ) and (r, θ) be the polar coordinates in the
material manifold Bt—which has yet to be constructed—and the ambient space S, respectively. The ambient
space metric g is represented in polar coordinates by a diagonal matrix diag(1, r2).

3.1 The material manifold

The first task is to construct a time-dependent material manifold Bt resulting from the addition of the new
rings. We denote by S(t) the material external radius of the growing cylinder, so that

Bt = {(R,Θ) : R0 < R ≤ S(t) , 0 ≤ Θ < 2π} .

Note that since we are concerned with a model for continuous accretion with no ablation, S(t) is assumed to
be a continuous bijective mapping. One can hence define its inverse map τ = S−1 assigning to each ring at
R ≥ R0 its time of attachment τ(R) as defined in §2.1. Assuming that accretion starts at t = 0 , it follows
that τ(R0) = 0 and equivalently that S(0) = R0. We define the material growth velocity U(t) = Ṡ(t), which

yields S(t) = R0 +
∫ t

0
U(ν)dν . In what follows, we choose S(t) such that U(t) = u(t),6 which means that in the

time interval [t, t+ dt] the external radii of both the material and spatial disks grow by the amount u(t)dt (see

Fig. 1). Hence, S(t) = R0 +
∫ t

0
u(ν)dν.

Kinematics of the accreting cylinder. We assume that the growing cylinder deforms in a radially-
symmetric fashion, i.e., we take motions ϕt of the kind (r(R, t),Θ). The deformation gradient reads

F (R, t) =

[
r,R(R, t) 0

0 1

]
, (11)

where a subscript comma denotes partial differentiation, e.g., r,R(R, t) = ∂r
∂R (R, t). As was mentioned earlier,

as the growth surface R = S(t) is traction-free, Q = F̄ , and hence, u = F̄U . Therefore, the material growth
speed U and the spatial growth speed u are related as

u(t) = r,R(S(t), t)U(t) . (12)

This is equivalent to assuming the absence of traction on the outer boundary, see [Sozio and Yavari, 2019a].
Having already assumed U(t) = u(t), Eq. (12) gives us

r,R(S(t), t) = 1 , or r,R(R, τ(R)) = 1 , (13)

so that the frozen deformation gradient reads F̄ = I, see §2.1. We introduce the notation s(t) = r(S(t), t), see
Fig. 1, and r̄(R) = r(R, τ(R)), so that one has s = r̄ ◦ S or r̄ = s ◦ τ . Finally, the rate of change of the spatial
radius of the growing cylinder s(t) = r(S(t), t), representing the radial and the only non-zero component of the
total velocity w, is written as

ṡ(t) =
d

dt
[r(S(t), t)] = r,R(S(t), t)Ṡ(t) + r,t(S(t), t) = Ṡ(t) + r,t(S(t), t) , (14)

where r,t = ∂r/∂t is the radial and only non-zero component of the standard velocity v. From (14), it follows

that the velocity of the accretion boundary is the result of two contributions: Ṡ(t) = U(t) = u(t), due merely
to accretion, and the standard velocity r,t(S(t), t) .

6Note that there are many other choices that will result in the same stress calculation. As a matter of fact, for isotropic solids
the geometric theory suggests that the material body is represented by a class of infinitely many isomorphic Riemannian manifolds.
The anisotropic case is slightly more complicated as one needs to look at the symmetry group for the constitutive equation, but
there is still some arbitrariness. This was discussed in detail in [Sozio and Yavari, 2017] and [Sozio and Yavari, 2019b].
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3.2 The material metric

As was discussed earlier, given a material manifold Bt, first one constructs a metricG0 for Bt taking into account
the history of loading during the accretion process. Next, given the actual evolution of the temperature field
T in the growing body, the material metric can be constructed following (1) and (2) as G = e2ω(T )G0. Hence,
following Sozio and Yavari [2017], a material metric for a ring of the material annulus Bt under the uniform
temperature Tm is given by the pull-back of g by ϕ at its time of attachment τ(R) as in (3). Therefore, as we
showed Q(R) = F̄ (R) ≡ I, and hence one obtains

G0(R) =

[
1 0
0 r̄2(R)

]
. (15)

Note that the reference temperature field is T0 = Tm. Then, by virtue of (4) and (15), the material metric reads

G(R, t) = e2ω(T (R,t))

[
1 0
0 r̄2(R)

]
, (16)

where the function ω(T ) is discussed in Appendix A.

3.3 Governing equations

From (11) and (16), the incompressibility condition J = 1 is written as

r(R, t) r,R(R, t) = e2ω(T )r̄(R, t) . (17)

Thus, it follows that

r2(R, t) =

∫ R

R0

2r̄(ξ)e2ω(T (ξ,t))dξ +R0
2 . (18)

Figure 2: The accreting cylinder at four different times 1
4
tf , 1

2
tf , 3

4
tf , tf . The lighter colors indicate higher temperatures. Note

that the gray circle at the center representing the rigid internal substrate for the growing cylinder is identical in all the four figures;
if the reader sees a difference, it is due to the Delboeuf illusion.

As for the balance of linear momentum, we first compute the Finger deformation tensor, viz.

b] =

[
r̄2e2ω

r2 0
0 1

r̄2e2ω

]
.

Therefore, following (7), the Cauchy stress tensor reads

σ =

[
µr̄2e2ω

r2 − p 0
0 µ

r̄2e2ω −
p
r2

]
, (19)

where p is the pressure field associated with the incompressibility condition, and the shear modulus µ depends
on the temperature field and therefore on the radial coordinate and time, i.e., µ = µ(T (R, t)). The radial
component of the equilibrium equation (8) is simplified to read

σrr,R +
r,R
r

(
σrr − r2σθθ

)
= 0 ,
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Parameter Symbol Value

Internal material radius R0 1 Lo
Shear modulus µ 1 µo
Accretion time tf 1 to
Melting temperature Tm 1 To
Substrate temperature Ts 0 To
Thermal expansion coefficient at Ta αa 0.25 T−1

o

Heat transfer coefficient hs 2 µoLo

toTo

Diffusivity coefficient D 1
L2

o

to

Table 1: Parameters for the numerical calculations of the accreting cylinder.

from which, by (19), it follows that

σrr,R =
µ

r̄

(
1− r̄4e4ω

r4

)
.

Since σrr(S(t), t) = 0, one obtains the following expression for the radial stress:

σrr(R, t) = −
∫ S(t)

R

µ(T (ξ, t))

r̄(ξ)

[
1− r̄4(ξ)e4ω(T (ξ,t))

r4(ξ, t)

]
dξ . (20)

On the other hand, it follows from (19) that

σθθ =
σrr

r2
+
µ

r2

[
r2

r̄2e2ω
− r̄2e2ω

r2

]
,

where r is given by (18).7 Note that at R = S(t), one has r̄ = r, and T = Tm—whence ω = 0. Therefore, the
stress-free boundary condition for the hoop stress, i.e., σθθ(S(t), t) = 0, is trivially satisfied.8 Once accretion
is completed, one can calculate the residually stressed configuration r̃(R) through (18) and (20) by imposing
uniform T = Ta and traction-free boundary conditions. The residual stresses are denoted by σ̃rr and σ̃θθ (see
Fig. 4).

Assuming that there is no external heat supply and neglecting the coupling term, the heat equation (10)
simplifies to read

Div
(
KG]dT

)
= ρcE Ṫ . (21)

Recalling from (6) that ρ(R, t) = ρ0(R)e−2ω(T (R,t)), and from Appendix C, Eq. (21) is simplified to read

K

r̄

(
r̄(R)

∂T

∂R

)
,R

+
dK

dT
T,R

2 = ρ0cE Ṫ . (22)

We assume a Neumann boundary condition on the inner boundary R = R0:

[K(T )T,R − ha(T − Ta)](R0,t)
= 0 , (23)

where ha is the heat transfer coefficient between the cylinder and the ambient air inside the hollow cylinder.
On the growth surface R = S(t), the temperature boundary condition is T = Tm.

7If the inner boundary is subject to a traction (pressure) pi, the condition σrr(S(t), t) = −pi(t) gives the following equation∫ S(t)

Ri

µ(T (ξ, t))

r̄(ξ)

[
1−

r̄4(ξ)e4ω(T (ξ,t))

r4(ξ, t)

]
dξ = pi(t) .

8Note that σθθ(S(t), t) = 0 is not assumed; it is anticipated by virtue of Q = F̄ .
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Figure 3: Left: Radial and circumferential stresses σrr (red) and σθθ (blue) at three different times 1
3
tf , 2

3
tf , tf . Note that σθθ

has the dimension of a stress over an area, i.e., it is not a physical component. Its physical representation is r2σθθ, which is very
close to σθθ as its highest value is at R = 1. Notice that both components of stress vanish at the outer surface, i.e., for R = S(t),
for any t. Right: Temperature at three different times 1

3
tf , 2

3
tf , tf .
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1
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2
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-0.25

-0.2

-0.15

-0.1

-0.05

0

Figure 4: Left: Time-independent quantities at the end of accretion. The radial coordinate R, the external radius at the time of

attachment r̄(R), the “cooled-down” external radius at the time of attachment eω(Ta)r̄(R) at the ambient temperature Ta, and the
relaxed r̃(R) corresponding to the residually stressed configuration. Right: Radial and circumferential residual stresses σ̃rr (red)
and σ̃θθ (blue). Note that σ̃θθ is not a physical component, but is very close to r2σ̃θθ as its highest value is at R = 1. Note
also that the values of both components of residual stress are comparable with the respective values of the thermal stresses during
accretion shown in Fig. 3.

3.4 Numerical results

In the numerical examples the growth velocity is assumed constant in time, i.e., u(t) ≡ u. This implies S(t) = ut
and τ(R) = R−R0

u . We take Lo = R0, To = Tm, while growth is assumed to stop when the material external
radius is 3Lo. This implies that u = 2Lo/to. The values of all the parameters involved in the calculations are
shown in Table 1, while plots of the numerical results are shown in Figs. 2, 3 and 4. Note that in the numerical
examples we show the residually stressed configurations for which temperature is uniform. This means that
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incompatibility (or residual stress) is not caused directly by thermal expansion/contraction. However, the
residual stresses indirectly depend on the thermal strains during the accretion process thorugh the accretion
tensor Q, which depends on the history of deformation localized on the growth surface.

For the numerical calculations, we use a discrete time domain with a constant time interval h. In each time
interval, we use a two-step numerical scheme based on the finite difference method to solve (17) and (22). The
scheme is schematically illustrated in Fig. 5. We consider an equally distanced grid for R, and at the beginning
of every time interval, we add a new point to the grid. At the time step i−1, a layer of hot material is added to
the outer boundary of the cylinder. In the first step, we solve the thermal problem by discretizing (22) using the
finite difference method. Let T be a vector containing the values of the temperature field T at all the grid points
and let Ṫ = F(T) be the discretization of (22). We approximate the time derivative with an implicit backward

Euler formula as T(i) − T(i−1) = hF(T(i)), where i is the time interval number. One can solve this equation

with a linear solver to obtain T(i), provided that T (i) = Tm at the new outer grid point, T(i−1) is available
from the previous time interval, and the boundary condition (23) is imposed at the grid point corresponding
to R = R0. In the second step, we use the same grid to discretize (17). Note that ω(T ) in (17) is calculated

using T(i) obtained in step 1. Next, we impose r(R0) = R0, and from (13), r,R = 1 at the outer grid point and
use Newton’s method to solve the discretization of (17) to obtain r at all the grid points. We use the values
of r obtained in the previous time interval as the initial guess for Newton’s method. We repeat the two steps
for the next time interval. When we reach tf , we remove the constraints, impose Ta everywhere, and calculate
the residually-stressed configuration (see Fig. 4). We do this by using a load control procedure that gradually
applies the change of material metric given by (16) multiplying G0 by e2ω(T (R,tf )) + η

[
e2ω(Ta) − e2ω(T (R,tf ))

]
,

as η increases form 0 to 1.

R0 Si−1 Si
R0

Tm

Time step i-1 Time step i

First guess assembly Thermal problem Mechanical problem

STEP 1 STEP 2

Ta

R0 Si−1 Si R0 Si−1 Si R0 Si−1 SiSf Sf Sf Sf

si−1
si

Figure 5: A two-step computational scheme for a layered manufacturing process. The top row of plots represents the temperature
T (R). The bottom row of plots represents configuration r(R). Si−1 is the external material radius at time ti−1, Si denotes the
external material radius at time ti, Sf is the external material radius at the final step tf , si−1 is the external deformed radius at
time ti−1, and si denotes the external deformed radius at time ti.

4 Accretion of a two-dimensional block

In this section, we consider the thermoelastic accretion of a two-dimensional block. We assume that the material
starts being added on a rigid substrate. The initial width of the accreting body is L and might change in time
due to finite deformations. The growing body is sitting in an ambient temperature Ta and the substrate is
at temperature Ts, while stress-free layers of new material are continuously and uniformly added on the upper
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boundary of the block at a temperature Tm. We assume that Ta < Tm and Ts < Tm. This means that during the
accretion process the growing body experiences deformations that are induced by differential thermal expansion.
At time t , the material is added with a vertical flux of mass on the upper boundary of the body, which will
constitute at each time the accretion surface ωt.

9 The rate at which new material is added to the body at the
time t is given by the scalar function u(t). It should be emphasized that in the case of finite deformations the
growth velocity is not necessarily normal to the growth surface throughout the accretion process. We neglect
the effect of body forces and assume that the material is added in a stress-free state. We assume that the block
is made of a uniform isotropic incompressible solid, with a uniform isotropic coefficient of thermal expansion
α(T ), and a uniform isotropic coefficient of heat conduction K(T ). We choose Cartesian coordinates (x, y) in
the ambient space, so that the material is initially deposited on the line segment [−L2 ,

L
2 ]×{0} representing ω0.

The ambient metric g in Cartesian coordinates is represented by the diagonal matrix diag(1, 1).

4.1 The material manifold

We take a rectangle with a time-dependent height S(t) as the material manifold, viz.

Bt =

{
(X,Y ) ∈ R2

∣∣∣ − L

2
≤ X ≤ L

2
, 0 ≤ Y ≤ S(t)

}
.

In doing so we assume that the accretion process does not change the topology of the body. We define the time
of attachment map τ = S−1, assigning to each layer of vertical coordinate Y ≥ 0 its time of attachment τ(Y ).
Assuming that accretion starts at t = 0, it follows that τ(0) = 0, and equivalently, S(0) = 0. The material
growth velocity U(t) is then vertical and has norm U(t) = u(t). This means that the thickness U(t)dt of the
added ring in the material manifold is equal to the thickness u(t)dt of the added ring in the spatial manifold, as

shown in Fig. 6. Therefore the height of Bt is S(t) =
∫ t

0
u(η)dη. The material metricG will be taken consistently

in order to obtain the Riemannian material manifold (Bt,G).

Btf

Bt1 (S, g)

ϕ̃

ϕtf

ϕt1

Unloaded configuration

S(t1) S(t1) + udt

S(tf )

Figure 6: Configurations of an accreting block.

9It is assumed that throughout the whole accretion process the configuration of the accretion surface is given by points (x, f(x, t)),
for some time-dependent f , so that the vertical addition of material on the whole upper boundary will always be possible.
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4.2 Kinematics of the accreting body

Let (X,Y ) and (x, y) be the Cartesian coordinates in the material manifold Bt and the ambient space S,
respectively. A motion for Bt is therefore a map (x(X,Y, t), y(X,Y, t)).10 Remember that, given a configuration
ϕt : Bt → S with tangent map F (t) = Tϕt, the frozen deformation gradient field F̄ (X,Y ) = F (X,Y, τ(Y ))
“freezes” the deformation gradient at the time of attachment of each layer. One can express F̄ as

F̄ =

[
∂x
∂X

∂x
∂Y

∂y
∂X

∂y
∂Y

]
t=τ(Y )

. (24)

Note that because the growth surface is traction free the material growth velocity is related to the spatial growth
velocity as u = F̄U . Therefore, having assumed U(t) = u(t), from (24) one obtains

∂x

∂Y

∣∣∣∣
t=τ(Y )

= 0 ,
∂y

∂Y

∣∣∣∣
t=τ(Y )

= 1 ,

which is a two-dimensional analogue of (13). Thus, one can write Eq. (24) as

F̄ =

 ∂x
∂X

∣∣
t=τ(Y )

0

∂y
∂X

∣∣∣
t=τ(Y )

1

 . (25)

4.3 The material metric

After having chosen a suitable material configuration, one defines a metricG, which depends on the temperature
following (1) and (2) as G = e2ω(T )G0, with the function ω such that ω(Tm) = 0, and so e2ω(Tm) = 1. The
metric G also takes into account the history of loading during the accretion process following (3) with Q = F̄ .
Using the same coordinate charts as above and recalling Eq. (25), one obtains

G0 =

 ∂x
∂X

∣∣2
t=τ(Y )

+ ∂y
∂X

∣∣∣2
t=τ(Y )

∂y
∂X

∣∣∣
t=τ(Y )

∂y
∂X

∣∣∣
t=τ(Y )

1

 , (26)

and the temperature-dependent reads G = e2ωG0.

P xY = P yY = 0 P
x
X

=
P
y
X

=
0

P
x
X

=
P
y
X

=
0

x = X , y = Y

T − Tm = 0

Qx = hs(T − Ts)

Q
x

=
h
a
(T
−
T
a
) Q

x
=
h
a (T
−
T
a )

Figure 7: Boundary conditions for the displacement and the stress (left), and for the temperature and the heat flux (right).

4.4 Governing equations

We assume that the material is incompressible, i.e., J = 1, which by virtue of (5) can be written as√
det g

detG
detF =

detF

det F̄
e− trω = 1 ,

10Unlike the one-dimensional example of the axi-symmetric infinite cylinder, it is not possible to define s(t) as the deformation
is not uniform along the width of the block.
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since Q = F̄ . Rearranging and emphasizing the dependence on the space coordinates and time, one has

detF (X,Y, t) = e2ω(T (X,Y,t)) det F̄ (X,Y ). (27)

We write the balance of linear momentum in terms of the first Piola-Kirchhoff stress tensor which is conve-
nient for imposing the boundary conditions. We consider a neo-Hookean model with a temperature-dependent
µ (see Appendix A). The first Piola-Kirchhoff stress tensor can be written using (7) and (3) as

P aA = µ(T )F aBG
AB − pFAbgab = µ(T )e2ω(T )F aBF̄

A
cF̄

B
bg
bc − pFAbgab . (28)

We neglect the inertial effects as accretion is a slow process, and the balance of linear momentum is written as

DivP + %0f = 0 . (29)

The boundary conditions for the balance of linear momentum are shown in Fig. 7. Note that the material
Christoffel symbols vanish since we are using Cartesian coordinates, and so the divergence of P in coordinates
reads

P aA|A = P aA,A + ΓAACP
aC ,

where the Christoffel symbols ΓABC for ∇G can be computed from (26). Once accretion is completed, one can
calculate the relaxed configuration ϕ̃ with residual stress P̃ or σ̃ by imposing uniform ambient temperature
T = Ta and traction-free boundary conditions.

The temperature field T that appears in the governing equations (27) and (28) is governed by Eq. (10). In
the absence of external heat supply and neglecting the mechanical dissipation term, it reads

ρcE Ṫ −Div
(
KG]dT

)
= 0 .

Using components and assuming a uniform K one obtains

ρcE Ṫ −KGAB
(

∂2T

∂XA∂XB
− ΓCAB

∂T

∂XC

)
= 0 , (30)

with the boundary conditions shown in Fig. 7.

Parameter Symbol Value

Width in the reference configuration L 1 Lo
Shear modulus µ 1 µo
Accretion time tf 1 to
Melting temperature Tm 1 To
Thermal expansion coefficient at Ta αa 0.2 T−1

o

Case 1 Case 2

Ambient temperature Ta 0.5 To 0 To
Substrate temperature Ts 0 To 0.5 To

Diffusivity coefficient D 0.2
L2

o

to
1
L2

o

to

Heat transfer coefficient (ambient) ha 10µoLo

toTo
1µoLo

toTo

Heat transfer coefficient (substrate) hs 1µoLo

toTo
10µoLo

toTo

Table 2: Parameters of the accreting two-dimensional block. Note that the diffusivity coefficient is defined as D = K
ρ0cE

.

4.5 Numerical results

In the numerical examples the growth velocity is assumed constant, i.e., u(t) ≡ u. This implies that S(t) = ut
and τ(Y ) = Y/u. We take S(tf ) = Lo, and therefore, u = Lo/to. As in the previous example, the reference
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Figure 8: The accreting block at four different times 1
4
tf , 1

2
tf , 3

4
tf , tf . The colors show temperature (top) and trC (bottom),

lighter colors correspond to higher values. The plots correspond to Case 1: the heat flux is driven by the heat exchange with the
lateral sides of the block, as can be observed from the temperature contour.

Figure 9: The accreting block at four different times 1
4
tf , 1

2
tf , 3

4
tf , tf . The colors show temperature (top) and trC (bottom),

lighter colors correspond to higher values. The plots correspond to Case 2: the heat flux is driven by the heat exchange with the
rigid substrate at the bottom side of the block, as can be observed from the temperature contour.

temperature To is the melting temperature Tm. We solve the same problem using two different sets of thermal
parameters. In the first case (Figs. 8 and 10) the heat flux is driven by heat exchange with the sides of the
block, while in the second case (Figs. 9 and 10) the body is cooled down mainly by the lower side that is in
contact with the substrate. Note that for incompressible two-dimensional solids trC characterizes C as the
other invariant is detC = 1. The values of all the parameters involved in the calculations are given in Table 2.

Here we use an approach similar to that of §3.4, but with a more sophisticated discretization method
that is suitable for 2D problems. To approximate the temperature and deformation history of a body in a

15



Figure 10: Top: The heat flux is driven by the heat exchange with the lateral sides of the block (Case 1). Bottom: The heat flux
is driven by the heat exchange with the rigid substrate at the bottom side of the block (Case 2). Left: The material manifold—
an L × utf rectangle—with the field of frames representing the Cartesian frame {i, j} deformed by F̄ , i.e., the moving frame
{F̄ i, F̄ j}. In this example the two-point tensor F̄ is the analogue of the plastic part of the deformation gradient in multiplicative
plasticity. Center: The configuration at the final time of accretion tf . Right: The residually-stressed configuration after thermal
and mechanical relaxation, i.e., relative to the uniform temperature T = Ta and traction-free boundary conditions. Note that the
residually-stressed configurations in the two cases are completely different.

Time step i-1 Time step i

First guess assembly Thermal problem Mechanical problem

STEP 1 STEP 2

Figure 11: A two-step computational scheme for a layered manufacturing process.

layered manufacturing process, we discretize the time domain into a finite set of equal time intervals h and
design a two-step numerical scheme for each time interval (see Fig. 11). In the first step, we assume that
a layer of new hot material is added to the initial body. We update the grid points and assign to the new
layer a metric G0 as in (26), where x and y are available from the time step i − 1. Note that since the new
layer is at temperature Tm, the material metric G is exactly G0. Next, we solve the heat equation (30) to
obtain the temperature field on the entire body (old layers and the newly added layer) after one time interval.
Following our approach in §3.4, let Ṫ = F(T) be the discretization of (30), where T is an array containing
the values of the temperature field T at all points of a two-dimensional grid. The implicit backward Euler
formula gives T(i) − T(i−1) = hF(T(i)). Note that the grid points have been updated after adding the new

layer, and thus, we interpolate T(i−1) on the new grid points. We choose the interpolated T(i−1) as the initial
guess of Newton’s method for T(i). Then, to obtain T(i), we impose the boundary conditions and solve the
above equation using Newton’s method considering a numerical Jacobian matrix. In the second step, we use the
computed temperature T(i) to update the temperature-dependent material metric G and then numerically solve
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the equations of nonlinear elasticity (29) subjected to change of G = e2ωG0 with G0 given in (26). This gives
us the deformed configuration of the body after adding a layer of new hot material. We assume for simplicity
that the boundary of the body ∂DBt is a disjoint union of ∂DBt and ∂NBt and is subjected to the boundary
conditions ϕt = ϕ̂t on ∂DBt and PN = t on ∂NBt, where N is the unit outward normal vector field of ∂NBt.
For the numerical calculations, we use the following weak formulation of (29)∫

Bt

Υa
|BPa

B dV =

∫
Bt

%0baΥa dV +

∫
∂NBt

taΥa dA ,∫
Bt

(J − 1)q dV = 0 ,

ϕt = ϕ̂ on ∂DBt ,

(31)

where Υ is an arbitrary vector field such that Υ = 0 on ∂DBt, and q is an arbitrary scalar field. Also, recall
that P is given by (28). Next, we discretize (31) using a variational differential quadrature (VDQ) method
[Faghih Shojaei and Ansari, 2017] and obtain a set of algebraic equations. The 2D domain is discretized by
Chebyshev-Gauss-Lobatto grid points along the two axes. Over the entire 2D grid points, the derivatives in (31)
are approximated using the generalized differential quadrature (GDQ) method [Shu, 2012] and the integrals are
approximated by the relation given in [Faghih Shojaei and Ansari, 2017, Appendix b]. The boundary conditions
in (31)3 are imposed using the standard elimination approach. At time step i, the discretized material metric

G(i) changes due to the new distribution of temperature T(i). We use Newton’s method to solve the resulting
algebraic equations from (31) in a load control procedure that gradually applies the change of material metric

by G(i−1) + η[G(i) − G(i−1)] as η increases form 0 to 1. We observed that using the same grid points for
approximating the spatial coordinates (x, y) and the pressure p results in a singular method. This is due to
violation of Ladyzhenskaya-Babuška-Brezzi (LBB) condition. To overcome this issue, we used a coarser grid
for approximating p relative to that of (x, y). To improve the efficiency, we calculate the Jacobian matrix
analytically by linearizing (31). We repeat the two steps for the next time interval.

5 Conclusions

In this paper we formulated a theory for the coupling of accretion and thermoelasticity. We focused on the
analytical formulation of the thermoelastic accretion of an infinite cylinder and of a two-dimensional body. These
two examples represent very simple one-dimensional and two-dimensional benchmark problems for thermoelastic
accretion. We developed numerical schemes for the solution of these two problems. The numerical calculations
allowed us to uncover the general features of accretion in the context of thermally induced deformations, such
as the presence of residual stress. The numerical calculations allowed us to show the main features of thermal
accretion, e.g., the presence of residual stress in accreted bodies, and the dependence of their final characteristics
on the history of deformation. This in turn implies the dependence of the mechanical characteristics of an
accreted body on the parameters of the accretion process. In particular, in the two-dimensional case, changing
the boundary conditions for the heat equation, we were able to show the strong dependence of the characteristics
of the accreted body on the thermal parameters of accretion. This suggests a new approach to control accretion
through tailoring the thermal parameters in order to achieve specific mechanical characteristics.

Extending the present theory to include changes of phase will be the subject of a future communication.
As a matter of fact, solidification represents a very important example of accretion, and to the best of our
knowledge, the nonlinear Stefan problem of a body undergoing large deformations has not been studied to this
date. As we mentioned earlier, it would be interesting to see how one can design specific accretion processes
in order to achieve desired shapes and mechanical properties in an accreted body. This could be done through
the manipulation of parameters such as growth velocity, heat transfer coefficients, ambient temperature, etc. A
further extension of the present work would be the development of an efficient finite element framework that
can be used to simulate more complex accretion problems. In particular, one can modify (31) by considering F
and P as independent variables and use the mixed finite element methods for compressible and incompressible
nonlinear elasticity introduced in [Faghih Shojaei and Yavari, 2018, 2019] to solve accretion problems. Finally, it
would be interesting to consider different ways of addition of material in order to address additive manufacturing
processes more specifically.
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Appendices

A A nonlinear thermoelastic constitutive model

In this appendix, we present a thermoelastic model following the works of Chadwick [1974], Ogden [1972a,b,
1992], and Holzapfel and Simo [1996]. See [Sadik and Yavari, 2017] for more details. For a homogeneous
isotropic solid, we denote by κ0, µ0 and β0, the bulk modulus, the shear modulus, and the volumetric coefficient
of thermal expansion at T0, respectively, with β(X,T ) = ∂

∂T trω(X,T ), while in the isotropic case β(X,T ) =

3 ∂
∂T ω(X,T ) = 3α(X,T ) in 3D, and β(X,T ) = 2 ∂

∂T ω(X,T ) = 2α(X,T ) in 2D. We consider the following
constitutive model

W̄(T, Ĩ, J) =
µ0

2

T

T0
(Ĩ − 3) +

κ0

2

T

T0
(J − 1)2 − κ0β0(J − 1) (T − T0)− ρ

∫ T

T0

cE(η)
T − η
η

dη ,

where Ĩ = J−2/3I, I = trC, J =
√

detC, and cE is the specific heat capacity at constant strain. In the
incompressible case, we have the constraint J = 1 associated with the pressure field p as the Lagrange multiplier
and the constitutive model transforms to read

W̄(T, I) =
µ0

2

T

T0
(I − 3)− ρ

∫ T

T0

cE(η)
T − η
η

dη ,

plus the Lagrange multiplier part p(J − 1)2. Note that the shear modulus is linear in temperature, i.e.,

µ(T ) = µ0
T

T0
.

The simplest thermoelastic model for the expansion coefficients is given by a constant α, viz.

α(T ) = α0 , ω(T ) = ω0
T

T0
, ω0 = α0T0 .

B A remark on the material metric

Eq. (1) is a generalization of the isotropic case that appeared in [Ozakin and Yavari, 2010]. In section 2.1 of
[Sadik and Yavari, 2017], due to a mis-manipulation of the musical operators for raising and lowering indices,
the representation of the material metric using the (1

1)-tensor ω was mistakenly presented as

G(X,T ) = G0(X)e2ω(X,T ).

Indeed, this representation may violate the symmetry requirement for the Riemannian metric G, while the
representation (1) ensures its symmetry. In what follow, we provide a correction of the proof appearing in
section 2.1 of [Sadik and Yavari, 2017]. The manifold (B,G0)—which corresponds to the stress-free temperature
field T0 = T0(X)—is flat. Hence, there exists a local coordinate chart {Y A} in which

G0 = δABdY A ⊗ dY B .
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Following Ozakin and Yavari [2010], the temperature-dependent material metric can be written as

G(X,T ) =
∑
K

e2ωK(X,T )dY K ⊗ dY K ,

where {ωA}A=1,2,3 describes the thermal expansion properties of the material such that ωK is related to the
thermal expansion coefficient αK in the direction ∂

∂Y K by

αK(X,T ) =
∂ωK
∂T

(X,T ),

and ωK(X,T0) = 0. Let the change of basis between {Y A}A=1,2,3 and some arbitrary local coordinate chart
{XA}A=1,2,3 be written as

dY K = AKJdXJ ,

which also reads as
∂

∂Y K
= (A−1)IK

∂

∂XI
.

Then it follows that

G =

(∑
K

e2ωKAKIA
K
J

)
dXI ⊗ dXJ .

Let ω be the (1
1)-tensor

ω =
∑
K

ωK
∂

∂Y K
⊗ dY K =

∑
K

(A−1)IKωKA
K
J

∂

∂XI
⊗ dXJ .

However, in {XA}, one has
G0 = δABA

A
IA

B
JdXI ⊗ dXJ .

Hence, the material metric transforms to

G(X,T ) = eω
L

I (G0)LM eω
M

J dXI ⊗ dXJ ,

where (G0)LM are the components of G0 in {XA}. This is the coordinate representation of (1). Note that even
though the general representation for the material metric used in [Sadik and Yavari, 2017] had this symmetry
fallacy, the results of the paper and the examples were not affected and remain valid.

C Christoffel symbols for the accreting cylinder

First note that denoting with (Γ0)ABC the Christoffel symbols relative to G0 as in (3), one obtains

ΓABC = (Γ0)ABC + (G0)AD[(G0)DBω,C + (G0)DCω,B − (G0)BCω,D] .

Therefore, as G]
0 : G0 = dimB, one has

ΓBBC = (Γ0)BBC + (dimB) ω,C .

Under the assumption of a uniform material one has ω,C = ∂ω
∂T T,C = αT,C , i.e., dω = α dT , so one writes

ΓBBC = (Γ0)BBC + (dimB)αT,C .

Now we compute the Christoffel symbols for the material metric G of (16). The only non-zero Christoffel
symbols are

ΓRRR = T,Rα(T ) ,

ΓRΘΘ = −r̄(R) [r̄′(R) + r̄(R)T,Rα(T )] ,

ΓΘ
RΘ =

r̄′(R)

r̄(R)
+ T,Rα(T ) .
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Now one can compute the material divergence Div[K(T )G]dT ] for the heat equation as

Div[K(T )G]dT ] =
[
K(T )GABT,B

]
|A

=
[
K(T )GAB

]
|A T,B +K(T )GAB [T,B ]|A

= [K(T )]|AG
ABT,B +K(T )GAB

[
T,AB − ΓCABT,C

]
=

dK

dT
T,R

2GRR +K(T )
[
T,RRG

RR −
(
ΓRRRG

RR + ΓRΘΘG
ΘΘ
)
T,R
]

=

[
dK

dT
T,R

2 +
K(T )

r̄(R)

∂

∂R

(
r̄(R)

∂T

∂R

)]
e−2ω(T ) .

D The reduced form of the Clausius-Duhem inequality in thermoe-
lastic accretion

In this appendix we discuss the restrictions that the second law of thermodynamics imposes on constitutive
equations. In particular, we correct a mistake in [Sadik and Yavari, 2017],11 which fortunately did not affect
any of the results or conclusions of that work. The localized form of the Clausius-Duhem inequality reads

ρṄ ≥ ρR
T
−Div

(
H

T

)
+ ρ

∂N
∂G

:Ġ , (32)

where N = N (X,T,C[,G) is the specific entropy. Expanding Eq.(32) and multiplying by T > 0 one obtains

ρT

(
∂N
∂T

Ṫ +
∂N
∂C[

:Ċ[

)
≥ ρR−DivH +

1

T
〈dT,H〉 , (33)

where in a local coordinate chart {XA}, the 1-form dT has the representation dT = ∂T
∂XA dX

A. The specific free

energy function has the form Ψ = Ψ(X,T,C[,G). The internal energy is defined as the Legendre transform
of the free energy with respect to the conjugate variables T and N , i.e., E = TN + Ψ, and hence, E =
E(X,N ,C[,G) . Therefore12

∂E
∂G

= T
∂N
∂G

+
∂Ψ

∂G
,

∂E
∂C[

= T
∂N
∂C[

+
∂Ψ

∂C[
.

The localized balance of energy reads [Sadik and Yavari, 2017]

ρĖ = S :D −DivQ+ ρR+ ρ
∂E
∂G

:Ġ .

This can be rewritten in terms of the specific entropy as

ρ

(
N +

∂Ψ

∂T

)
Ṫ + ρT

∂N
∂T

Ṫ + ρT
∂N
∂C[

:Ċ[ +

(
ρ
∂Ψ

∂C[
− 1

2
S

)
:Ċ[ = ρR−DivH . (34)

Substituting (34) into (33) one obtains

ρ

(
N +

∂Ψ

∂T

)
Ṫ +

(
ρ
∂Ψ

∂C[
− 1

2
S

)
:Ċ[ +

1

T
〈dT,H〉 ≤ 0 .

This inequality must hold for all deformations ϕ and metrics G . Therefore13

N = −∂Ψ

∂T
, S = 2ρ

∂Ψ

∂C[
, 〈dT,H〉 ≤ 0 .

11AY is grateful to Prof. Marshall Slemrod for a discussion that helped us find and correct this mistake.
12These simple relations were written incorrectly in Eq.(62) of Sadik and Yavari [2017].
13Note that in addition to the last two relations in Eq.(62), Eq.(66) in [Sadik and Yavari, 2017] is incorrect as well, and the final

form of the energy balance in Eq.(69) must be changed to read ρT Ṅ = ρR−DivH+ρT ∂N
∂G

:Ġ. Fortunately, nothing else in [Sadik
and Yavari, 2017] was affected by this mistake.
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