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In this paper we are concerned with finding exact
solutions for the stress fields of nonlinear solids
with non-symmetric distributions of defects (or
more generally finite eigenstrains) that are small
perturbations of symmetric distributions of defects
with known exact solutions. In the language of
geometric mechanics this corresponds to finding a
deformation that is a result of a perturbation of
the metric of the Riemannian material manifold. We
present a general framework that can be used for
a systematic analysis of this class of anelasticity
problems. This geometric formulation can be thought
of as a material analogue of the classical small-
on-large theory in nonlinear elasticity. We use the
present small-on-large anelasticity theory to find exact
solutions for the stress fields of some non-symmetric
distributions of screw dislocations in incompressible
isotropic solids.

1. Introduction
Mechanics of residually-stressed solids has been of
interest to many researchers in solid mechanics for quite
some time. In an anelastic deformation any measure
of strain has a non-elastic component. This means that
a non-vanishing strain does not necessarily correspond
to a non-vanishing (conjugate) stress; only the elastic
part of strain—the elastic strain—enters the constitutive
equations. The remaining part of strain is called pre-
strain or eigenstrain as coined by Mura [1]. One source
of anelasticity is defects. Line defects in solids were
mathematically introduced by Vito Volterra more than a
century ago [2]. Volterra realized that such defects, which
he called distortions, induce a self-equilibrated state of
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residual stresses. His calculations were done in the setting of linear elasticity. He introduced six
types of line defects, three of which are now called dislocations (translational defects), and the
other three are called disclinations (rotational defects). Other examples of anelasticity sources
include non-uniform temperature distributions [3, 4, 5], bulk growth [6, 7, 8, 9, 10], accretion
(surface growth) [11, 12], and swelling [13, 14, 15]. Following the pioneering works of Eckart [16]
and Kondo [17], the multiplicative decomposition of deformation gradient was proposed by Bilby
et al. [18] and Kröner [19] and has been extensively used in the literature to solve anelasticity
problems (see [20, 21] for a further discussion on the origins and the use of the multiplicative
decomposition in the mechanics literature). Alternatively, rather than using the conceptually
ambiguous intermediate configuration in the framework of the multiplicative decomposition (cf.
[4, 9] for detailed discussions), eigenstrains can be modeled using an abstract manifold (material
manifold) that is possibly non-Euclidean [22, 23].

Evolution of defects in solids is an important and difficult problem when strains are finite. The
complexity of the equations of anelasticity leaves little hope for finding exact solutions. A handful
of exact solutions have been found using semi-inverse methods assuming some symmetric classes
of deformations (these are all somewhat related to Ericksen’s universal deformations [24]). In the
case of defects, examples can be seen for dislocations and disclinations in [25, 26, 27, 28, 29, 30],
and for point defects and discombinations in [31, 32, 33]. The existing exact solutions correspond
to highly symmetric distributions of defects. As soon as this symmetry is broken, the governing
equations start to be utterly complicated leaving no choice but for numerical computations. One
possibility for extending the class of problems amenable to exact solutions is to study those defect
distributions that are perturbations of the highly symmetric ones. This is what we call small-on-
large anelasticity in this paper, which is a material analogue of the small-on-large theory of Green
et al. [34] (further discussion and several applications of this theory can be found in [35, 36]).
Given a distribution of some source of anelasticity with a known exact solution, we perturb the
distribution and solve for the induced small elastic deformations. This is achieved by linearizing
the governing equations about the known solution with respect to the perturbation. Even in the
case when one fails to find exact solutions in this framework, the linearized governing equations
are much easier to solve numerically. In this paper we are concerned with the change of the state
of stress (residual stress) of a hyperelastic body with a given distribution of defects, or more
generally a source of anelasticity, under a perturbation of the defect distribution. A change of the
defect distribution changes the geometry of the material manifold, and consequently changes the
metric of the underlying Riemannian material manifold. Such calculations have two immediate
applications: i) Suppose one has an analytic solution for the stress field of a given distribution
of defects (dislocations, disclinations, point defects, or a combination of them—discombinations
[33]). Can one calculate the residual stress field of the body if the defect distribution is perturbed
slightly? ii) One may be interested in stability of a defect distribution. If the defect distribution is
allowed to perturb, would the total energy of the system change? Any reduction of the energy of
the system may indicate instability of the defect distribution.

This paper is organized as follows. In §2, we briefly review the basic concepts of Riemannian
geometry and geometric elasticity needed in our formulation of small-on-large anelasticity. In §3,
we formulate the governing equations for the small deformations induced by a perturbation of the
distribution of finite eigenstrains. In our geometric framework, such a perturbation is equivalent
to perturbing the material metric. In §4, we solve several examples of screw dislocations that are
perturbations of an axi-symmetric distribution of screw dislocations in an infinite body made of
an incompressible isotropic solid. Conclusions are given in §5.

2. An overview of nonlinear elasticity
We briefly review in the following some elements of the geometric formulation of nonlinear
elasticity and anelasticity. For more details, see for example [29, 37]. Let B be a three-dimensional
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body identified with a three-dimensional Riemannian manifold (B,G)1—the material manifold
where the body is stress-free. Let (S, g) be a Riemannian ambient space manifold, which we
assume is Euclidean, i.e., S = R3 and g its usual Euclidean metric.2 We adopt the standard
convention to denote objects and indices by uppercase characters in the material manifold B
(e.g., X ∈B) and by lowercase characters in the spatial manifold S (e.g., x∈ S). We denote
by {XA} and {xa} the local coordinate charts on B and S , respectively, by ∂A = ∂

∂XA
and

∂a = ∂
∂xa , we denote the corresponding local coordinate bases, respectively, and by {dXA}

and {dxa} , we denote the corresponding dual bases. We also adopt Einstein’s repeated index
summation convention, e.g., uivi :=

∑
i u
ivi . Let ∇G , and ∇g be the Levi-Civita connections

of (B,G) , and (S, g) , repectively. We denote their respective Christoffel symbols by ΓABC ,
and γabc , in the local coordinate charts {XA} and {xa} , respectively. By a configuration of B ,
we mean a smooth embedding ϕ :B→S . We denote the set of all configurations of B by C . A
motion of B is a smooth curve in C , i.e., a mapping t∈R+→ϕt ∈ C . We introduce the notations
ϕ(X, t) :=ϕX(t) :=ϕt(X) .

The deformation gradient F is defined as the tangent map of ϕt :B→S , i.e., F (X, t) :=

Tϕt(X) : TXB→ Tϕt(X)S . We denote the transpose of F by FT and it is defined
such that ∀(W ,w)∈ (TXB × Tϕt(X)S) : g(FW ,w) =G(W ,FTw) . In components, (FT)Aa =

gabF
b
BG

AB . The Jacobian J relates the material and spatial Riemannian volume elements
dV (X,G) and dv(x, g) by dv(ϕt(X), g) = J(X,F ,G, g)dV (X,G) . It can be shown that J =√

det g
detG detF . The right Cauchy-Green deformation tensor is defined as C =FTF . In

components, CAB =GAKFaKF
b
Bgab . Note that C[ agrees with the pull-back of the spatial

metric g by ϕ , i.e., C[ =ϕ∗g , where (.)[ denotes the flat operator for lowering tensor indices.
The left Cauchy-Green deformation tensor (also called Finger tensor) is defined as b=FFT . In
components, bab = FaAF

c
BG

ABgcb . Note that b−[ agrees with the push-forward of the material
metric G by ϕ , i.e., b−[ =ϕ∗G , where (.)−[ denotes the inverse operator followed by the flat
operator. We define the convective manifold as the Riemannian manifold (B,C[) . Let∇C be the
Levi-Civita connection of (B,C[) . We denote its corresponding Christoffel symbols in the local
coordinate chart {XA} by Γ̃ABC .

The material velocity of the motion is defined as the mapping V :B × R+→ TS such that
V (X, t) :=ϕX∗∂t ∈ TϕX(t)S , which in components reads V a(X, t) = ∂ϕa

∂t (X, t) . The spatial
velocity is defined as the mapping v :ϕt(B)× R+→ TS such that v(x, t) :=V (ϕ−1

t (x), t)∈ TxS .
The material acceleration is defined as the mapping A :B × R+→ TS such that A(X, t) :=

Dgt V (X, t)∈ Tϕ(X)S , where Dgt denotes the covariant derivative along ϕX . In components,
Aa = ∂V a

∂t + γabcV
bV c . The spatial acceleration is defined as the mapping a :ϕt(B)× R+→ TS

such that a(x, t) :=A(ϕ−1
t (x), t)∈ TxS . In components, aa = ∂va

∂t + ∂va

∂xb
vb + γabcv

bvc .
We denote the material and spatial mass densities by ρo and ρ , respectively. The conservation

of mass in local form reads ρJ = ρo , which is equivalent to

dρ

dt
+ ρdivgv= 0 ,

where divg denotes the spatial divergence operator.
We assume that the body is made of a hyperelastic material, so that the constitutive model is

given by an energy functionW = W̃(X,F , g,G)3 per unit undeformed volume, and the Cauchy
stress tensor is given by [40]

σ=
2

J

∂W̃
∂g

, (2.1)

1The material manifold need not be Riemannian, e.g., dislocations can be modeled by torsion [29, 38], and point defects by
non-metricity [32]. Note, however, that only the underlying Riemannian metric is needed to calculate (residual) stresses.
2See [39] for an example of a non-Euclidean ambient space.
3The dependence of the energy function W̃ on the metrics follows from the fact that W̃ is a scalar that depends on the
deformation gradient F . This requires the metrics to obtain a scalar out of it, e.g., tr(F TF ) = FaAF

b
BG

ABgab .
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which in components reads σab = 2
J
∂W̃
∂gab

. We can alternatively considerW = Ŵ(X,C[,G) and
the convected stress tensorΣ =ϕ∗tσ is written as [41]

Σ =
2

J

∂Ŵ
∂C[

, (2.2)

which in components reads Σab = 2
J

∂Ŵ
∂CAB

. If the material is incompressible, we have J = 1 and
the stress tensors σ andΣ are written as

σ= 2
∂W̃
∂g
− p g] , Σ = 2

∂Ŵ
∂C[

− pC−] , (2.3)

where p is the Lagrange multiplier associated with the incompressibility constraint, and (.)−]

denotes the inverse operator followed by the sharp operator for raising tensor indices. If the
material is isotropic, the strain-energy function is expressed as a function of the principal
invariants I1 = trC , I2 = 1

2 (tr(C)2 − tr(C2)) , and J , i.e., W = W̄(X, I1, I2, J) , and the stress
tensors σ andΣ can be written as [36, 40]

σ=

(
W̄J +

2I2
J
W̄I2

)
g] +

2

J
W̄I1b

] − 2JW̄I2b
−] , (2.4a)

Σ =
2

J

(
W̄I1 + I1W̄I2

)
G] − 2

J
W̄I2C

] + W̄JC
−] , (2.4b)

where W̄I1 = ∂W̄
∂I1

, W̄I2 = ∂W̄
∂I2

, and W̄J = ∂W̄
∂J . If the material is incompressible and isotropic,

one has

σ=
(
2I2W̄I2 − p

)
g] + 2W̄I1b

] − 2W̄I2b
−] , (2.5a)

Σ = 2
(
W̄I1 + I1W̄I2

)
G] − 2W̄I2C

] − pC−] . (2.5b)

In spatial form, the balance of linear and angular momenta read

divgσ + ρf = ρa , σT =σ , (2.6)

where f denotes the body force per unit mass. The balance of linear and angular momenta in terms
of the convected stress tensor read [41] (Note that, since ∇C =ϕ∗t∇G , the convective balance of
momenta (2.7) can alternatively be obtained directly from the classical spatial balance of momenta
(2.6).)

DivCΣ + ρϕ∗tF = ρϕ∗tA , ST =S , (2.7)

where DivC denotes the divergence operator with respect toC[ , and F := f ◦ ϕt .

3. Small-on-Large Deformations Due to a Material Metric
Perturbation

In this section, we formulate a theory of small superposed deformations due to a perturbation
of the material metric. Given a motion ϕt with respect to a reference configuration (B,G) , we
consider a 1-parameter family of metrics Gε such that G0 =G . We want to understand how
the state of stress in the body is affected by such a perturbation. Note that a perturbation of the
material metric is due to a perturbation of the source of anelasticity, e.g. a defect density. The
variation of the material metric is defined as

δG :=
d

dε

∣∣∣
ε=0
Gε .

For a small enough ε , one can write Gε =G+ εδG+ o (ε) . Note that even though the
deformation is seemingly independent of the material metric, changing the material metric may
affect the equilibrium configuration of the body at any given time t . Hence a perturbation of
the material metric may lead to a perturbation ϕt,ε of the motion, such that ϕt,0 =ϕt is the
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equilibrium configuration corresponding to the metric G0 =G . We define its corresponding
variation as

δϕt(X) := ϕt,X∗∂ε
∣∣
ε=0
∈ Tϕt(X)S ,

that is, δϕt = δϕat ∂a and δϕat (X) :=
dϕX,t
dε |ε=0 . Note that δϕ ◦ ϕ−1 is the displacement field in

the classical theory of linear elasticity and we denote it by U = δϕ ◦ ϕ−1. Since S = R3 , using
the linear structure of R3 , one can write for a small enough ε : ϕε =ϕ+ εδϕ+ o (ε) . Given the
configuration ϕ resulting in the stress field σ, the perturbed configuration ϕε due to the material
metric perturbation Gε induces a stress field, which for a small enough ε reads σε =σ + εδσ +

o (ε) . In the following, we formulate the governing equations to solve for δϕ and find δσ is terms
of δG and δϕ .

As ε varies, for fixed X and t , the right Cauchy-Green tensor C[ε remains in the same space
T 2 (T ∗XB) , the set of

(0
2

)
-rank tensors at X . Thus, it makes sense to define its variation as δC[ =

dC[ε
dε

∣∣∣∣
ε=0

. One can write δC[ as follows

δC[ =
d

dε
C[ε

∣∣∣∣
ε=0

=ϕ∗t
d

dε

[
ϕt∗ϕ

∗
t,εg
]∣∣∣∣
ε=0

=ϕ∗tLUg=ϕ∗t

(
∇gU [ +

[
∇gU [

]T)
= 2ϕ∗t ε ,

where (.)T denotes the transpose operator, and ε= 1
2

(
∇gU [ +

[
∇gU [

]T)
is the linearized

strain. The variation of the Jacobian of the motion reads4

δJ =
d

dε

∣∣∣∣
ε=0

√
detC[ε
detG

=

(
ε:g] − 1

2
δG:G]

)
J , (3.1)

where “:" denotes the double contraction tensor product. Using ρJ = ρo and the above equation
(3.1), the variation of the spatial mass density reads

δρ=−
(
ε:g] − 1

2
δG:G]

)
ρ . (3.2)

Note that when ε varies, the terms in the balance of linear momentum (2.7) are vectors that remain
in the same vector space TXB .5 Hence, one can write its variation as

d

dε

∣∣∣∣
ε=0

[
DivCεΣε + ρεϕ

∗
ε,tB

]
=

d

dε

∣∣∣∣
ε=0

[
ρεϕ
∗
ε,tAε

]
,

which, by expanding the divergence term in local coordinates, transforms to read

d

dε

∣∣∣∣
ε=0

[(
ΣABε ,B +ΣAKε Γ̃Bε BK +ΣBKε Γ̃Aε BK

)
∂A + ρεϕ

∗
ε,tB

]
=

d

dε

∣∣∣∣
ε=0

[
ρεϕ
∗
ε,tAε

]
. (3.3)

For different values of ε and fixed X and t , Σε lie in the same space T 2 (TXB) . Hence, one

can define δΣ = dΣε
dε

∣∣∣
ε=0

, which is computed in (3.4a) following (2.2). On the other hand, the

variation of the Cauchy stress can be defined as the push-forward of that of the convected stress,
i.e., δσ=ϕt∗δΣ . Therefore, one finds

δΣ =
4

J

∂2Ŵ
∂C[∂C[

:ϕ∗t ε+
2

J

∂2Ŵ
∂G∂C[

:δG−
(
ε:g] − 1

2
δG:G]

)
Σ , (3.4a)

δσ=
4

J

∂2W̃
∂g∂g

:ε+
2

J

∂2W̃
∂G∂g

:δG−
(
ε:g] − 1

2
δG:G]

)
σ . (3.4b)

We define the following fourth order elasticity tensors:

C :=
4

J

∂2W̃
∂g∂g

, D :=
2

J

∂2W̃
∂G∂g

, (3.5)

4Recall that if detA 6= 0 , one has d detA
dA = (detA)A−T . Here, detG 6= 0 and detC[ 6= 0 .

5However, note that when ε varies, the terms in the balance of linear momentum (2.6) are vectors that lie in the vector space
Tϕt,ε(X)S , in which the base point ϕt,ε(X) depends on ε .
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which in components read Cabcd = 4
J

∂2W̃
∂gab∂gcd

, and DabAB = 2
J

∂2W̃
∂GAB∂gab

. Using (2.7), (3.2) and

(3.4a), the governing equation (3.3) for the incremental stress transforms to6

DivC

(
4

J

∂2Ŵ
∂C[∂C[

:ϕ∗t ε+
2

J

∂2Ŵ
∂G∂C[

:δG

)
− dB

(
ε:g] − 1

2
δG:G]

)
·Σ

−2ΣBKC−AL ϕ∗t ε
∣∣
LM

Γ̃MBK∂A+ΣBKC−AL
[
ϕ∗t ε

∣∣
BL,K

+ϕ∗t ε
∣∣
KL,B

−ϕ∗t ε
∣∣
BK,L

]
∂A

−2ΣAKC−BL ϕ∗t ε
∣∣
LM

Γ̃MBK∂A+ΣAKC−BL
[
ϕ∗t ε

∣∣
BL,K

+ϕ∗t ε
∣∣
KL,B

−ϕ∗t ε
∣∣
BK,L

]
∂A

+ρ
d

dε

[
ϕ∗ε,tB

]∣∣∣∣
ε=0

= ρ
d

dε

[
ϕ∗ε,tAε

]∣∣∣∣
ε=0

,

(3.6)

where dB denotes the exterior derivative operator on B , i.e., for a function f :B→R , one has
dBf = ∂f

∂XA
dXA . Denoting by a double stroke (.)|| the convective covariant derivative, i.e., the

covariant derivative in the convective manifold (B,C) , one can write (ϕ∗t ε)BL,K + (ϕ∗t ε)KL,B −
(ϕ∗t ε)BK,L = (ϕ∗t ε)BL||K + (ϕ∗t ε)KL||B − (ϕ∗t ε)BK||L + 2 (ϕ∗t ε)LM Γ̃MBK . One can also show
that

C−BL
[(
ϕ∗t ε

)
BL||K +

(
ϕ∗t ε

)
KL||B −

(
ϕ∗t ε

)
BK||L

]
=
[
C−BL

(
ϕ∗t ε

)
BL||K + C−BL

(
ϕ∗t ε

)
KL||B − C

−BL (ϕ∗t ε)BK||L]
=

[(
C−1:ϕ∗t ε

)
,K

+ C−IJ
(
ϕ∗t ε

)
KJ||I − C

−JI (ϕ∗t ε)JK||I]=
(
g]:ε

)
,K

.

On the other hand, one has dB
(
ε:g]

)
·Σ =

(
g]:ε

)
,K
ΣKA∂A . Therefore, (3.6) is simplified to

read

DivC

(
4

J

∂2Ŵ
∂C[∂C[

:ϕ∗t ε+
2

J

∂2Ŵ
∂G∂C[

:δG

)
+ dB

(
1

2
δG:G]

)
·Σ

+ΣBKC−AL
[
ϕ∗t ε

∣∣
BL||K+ϕ∗t ε

∣∣
KL||B−ϕ

∗
t ε
∣∣
BK||L

]
∂A+ρ

d

dε

[
ϕ∗ε,tB

]∣∣∣∣
ε=0

= ρ
d

dε

[
ϕ∗ε,tAε

]∣∣∣∣
ε=0

.

(3.7)

Recall that,∇C =ϕ∗t∇g . Thus, one can write(
ϕ∗t ε

)
AB||C = FaAF

b
BF

c
Cεab|c =

1

2
FaAF

b
BF

c
C

(
Ua|bc + Ub|ac

)
.

Assuming that the ambient space is flat, it follows that Ua|bc =Ua|cb . Hence, it is straightforward
to show that (ϕ∗t ε)BL||K + (ϕ∗t ε)KL||B − (ϕ∗t ε)BK||L = F bBF

k
KF

l
LUl|bk . For the acceleration

vector, one has

d

dε

[
ϕ∗ε,tAε

]∣∣∣∣
ε=0

=ϕ∗tLUA=ϕ∗t

[
∂Aaε
∂ε

∣∣∣∣
ε=0

∂a +∇gUA−∇
g
AU

]
=ϕ∗t

[
DgεA−∇gAU

]
=ϕ∗t

[
DgεD

g
t V −∇

g
AU

]
=ϕ∗t

[
Dgt D

g
ε V +∇g

[U ,V ]
V −∇gAU

]
=ϕ∗t

[
Dgt D

g
t U +∇g

[U ,V ]
V −∇gAU

]
,

where Dgε denotes the covariant derivative along ε→ϕε,t(X) , for X and t fixed, and where
we used DgεD

g
t V =Dgt D

g
ε V +∇g

[U ,V ]
V , since we assume a flat ambient space. We also use

the symmetry lemma [42] to write Dgε V =Dgt U . For the body force vector, one similarly has
d
dε

[
ϕ∗ε,tB

]∣∣∣
ε=0

=ϕ∗tLUB =ϕ∗t
[
∇gUB −∇

g
BU

]
. Finally, using the above results and pushing

6Recall that the Christoffel symbols for the convective Levi-Civita connection, i.e., the Levi-Civita connection for the

convective manifold
(
B,C[

)
, read Γ̃ABK = 1

2C
−AL (CBL,K + CKL,B + CBK,L) .
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forward (3.7) by ϕt , one obtains the following balance of linear momentum for the perturbed
motion

divg (C:ε+ D:δG) + ϕt∗dB

(
1

2
δG:G]

)
· σ

+∇g∇gU :σ + ρ
(
∇gUB −∇

g
BU

)
= ρ

(
Dgt D

g
t U +∇g

[U ,V ]
V −∇gAU

)
,

(3.8)

where ∇g∇gU :σ= σab∇g∂a∇
g
∂b
U = σabUc|ba∂c . If the material is incompressible, the variation

of the convected and the Cauchy stress tensors are written as

δΣ =ϕ∗t (C:ε+ D:δ)− δpC−] + 2pϕ∗t ε
] , (3.9a)

δσ= C:ε+ D:δG− δp g] + 2pε], (3.9b)

where δp= d
dε

∣∣∣
ε=0

pε is the resulting pressure variation, which can also be interpreted as the

Lagrange multiplier associated with the constraint δJ = 0 . Therefore, for an incompressible solid,
the balance of linear momentum for the perturbed motion reads

divgδσ + ϕt∗dB

(
1

2
δG:G]

)
· σ +∇g∇gU :σ + ρ

(
∇gUB −∇

g
BU

)
= ρ

(
Dgt D

g
t U +∇g

[U ,V ]
V −∇gAU

)
.

(3.10)

Remark 3.1. Note that for an isotropic solid, one can show that the components of the elasticity tensors
(3.5) read

Cabcd =

(
W̄J+JW̄JJ+4I2W̄I2J+

4I2
J
W̄I2 +

4I2
2

J
W̄I2I2

)
gabgcd +

4

J
W̄I1I1b

abbcd

−
(
W̄J+

2I2
J
W̄I2

)(
gacgbd+gadgbc

)
+

(
2W̄I1J+

4I2
J
W̄I1I2

)(
gabbcd+babgcd

)
− J

(
2JW̄I2J+4W̄I2 +4I2W̄I2I2

) (
gabb−cd+b−abgcd

)
+ 4J3W̄I2I2b

−abb−cd

+ 2JW̄I2

(
b−acgbd+b−adgbc+b−bcgad+b−bdgac

)
− 4JW̄I1I2

(
b−abbcd+babb−cd

)
,

(3.11a)

DabAB =−
(

1

2
W̄J+

J

2
W̄JJ+2I2W̄I2J+

2I2
J
W̄I2 +

2I2
2

J
W̄I2I2

)
gabGAB

− 1

J
W̄I1

(
FaKF

b
LG

AKGBL+F bKF
a
LG

AKGBL
)
− 2J3W̄I2I2b

−abC−AB

+ J
(
JW̄I2J+2W̄I2 +2I2W̄I2I2

) (
b−abGAB+gabC−AB

)
− 2

J
W̄I1I1b

abCAB

+ 2JW̄I1I2

(
b−abCAB+babC−AB

)
−
(
W̄I1J+

2I2
J
W̄I1I2

)(
babGAB+gabCAB

)
− JW̄I2

(
gakgblF−AkF

−B
l+g

bkgalF−AkF
−B

l

)
.

(3.11b)

For an incompressible isotropic solid, the components of the elasticity tensors can be obtained from (3.11)
by setting J = 1 and removing the terms containing W̄J .

4. Examples of Material Metric Perturbations in an Infinitely Long
Cylindrical Bar with an Axi-Symmetric Distribution of Parallel
Screw Dislocations

In this section, we solve examples of perturbed dislocation distributions. Starting from a
dislocation distribution with an existing equilibrium solution, we perturb it and solve for
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the induced small elastic deformations due to the resulting material metric perturbation. We
consider the example of a cylindrically-symmetric distribution of parallel screw dislocations
in a cylinder made of an incompressible, isotropic, and radially inhomogeneous nonlinear
elastic solid, i.e., a solid with an energy function that can be written as W = W̄(R, I1, I2) .
Using the geometric theory of nonlinear dislocation mechanics introduced in [29], we first
construct the stress-free Weitzenböck material manifold for an arbitrary cylindrically-symmetric
parallel screw-dislocations distribution. Next, considering a perturbation of the axi-symmetric
dislocation distribution following §3, we solve for the induced small elastic deformations and the
corresponding stress field.

(a) Material metric perturbation
In a cylindrical coordinate system (R,Θ,Z), we consider a distribution of cylindrically-symmetric
screw dislocations parallel to the Z-axis by assuming a Z-oriented radially-symmetric Burgers’
vector density b= b(R) . Let us consider a perturbation of this Burgers’ vector distribution, i.e.,
we take a one-parameter family of Burgers’ vectors bε(R,Θ,Z) such that b0(R,Θ,Z) = b(R) . We

define its variation as δb= d
dε bε

∣∣∣
ε=0

. The given distribution of Burgers’ vectors is equivalent to

having the following torsion 2-forms

T 1 = T 2 = 0 , T 3
ε =

bε(R,Θ,Z)

2π
ϑ1 ∧ ϑ2 .

Following the method of Cartan’s moving frames [43], we look for an orthonormal coframe field
of the form ϑ1 = dR, ϑ2 =RdΘ, ϑ3 = dZ + fε(R,Θ,Z)dΘ, for some function fε = fε(R,Θ,Z)

to be determined. Denoting by ωαβ the connection 1-forms, Cartan’s first structural equations,
T α = dϑα + ωαβ ∧ ϑβ , for α= 1, 2, 3 , give one the following non-zero connection coefficients

ω1
22 =− 1

R
, ω1

32 =−1

2

(
fε,R
R
− bε

2π

)
, ω2

13 = ω3
21 =

1

2

(
fε,R
R
− bε

2π

)
, ω2

33 =
fε,Z
R

.

Hence, the connection 1-forms read

ω1
2=− 1

R
ϑ2− 1

2

(
fε,R
R
− bε

2π

)
ϑ3, ω2

3=
1

2

(
fε,R
R
− bε

2π

)
ϑ1+

fε,Z
R

ϑ3, ω3
1=

1

2

(
fε,R
R
− bε

2π

)
ϑ2.

Cartan’s second structural equations, Rαβ = dωαβ + ωαγ ∧γ β , for α, β = 1, 2, 3 , along with the
flatness of the material manifold yield,7 fε,R =R bε

2π , fε,Z = 0. Therefore, bε,Z = 0, and hence
bε = bε(R,Θ) , i.e., a Z-dependent Burgers’ vector cannot be accommodated using the assumed
coframe field. It then follows that fε(R,Θ) = 1

2π

∫R
0 ξbε(ξ,Θ)dξ , and the perturbed material

metric in the coordinate frame is written as

Gε =

 1 0 0

0 R2 + f2
ε (R,Θ) fε(R,Θ)

0 fε(R,Θ) 1

 .

Hence, the variation of the material metric is written as

δG=

 0 0 0

0 2f(R)δf(R,Θ) δf(R,Θ)

0 δf(R,Θ) 0

 ,

where

f(R) =
1

2π

∫ R

0
ξb(ξ)dξ and δf(R,Θ) =

1

2π

∫ R

0
ξδb(ξ,Θ)dξ .

7For dislocations, the material manifold is by construction a Weitzenböck manifold, i.e., it is flat and has a compatible
connection with a possibly non-zero torsion [38].
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Knowing that b0 = b(R) , we have f0 = f(R) = 1
2π

∫R
0 ξb(ξ)dξ andG0 =G(R) is the metric for the

axi-symmetric parallel screw dislocations

G=

 1 0 0

0 R2 + f2(R) f(R)

0 f(R) 1

 .

Note that tr (δG) = δG:G] = 0 .

(b) Stress perturbation
Let us first find the residual stress field for the finite axi-symmetric distribution assuming
an incompressible isotropic solid. Based on the symmetry of the problem, we look for an
embedding of the material manifold in the Euclidean ambient space such that, in cylindrical
coordinates (r, θ, z) , we have ϕ (R,Θ,Z) = (r(R), Θ, Z) . Then, the deformation gradient reads
F = diag

(
r′(R), 1, 1

)
and the Jacobian is written as J = rr′/R. Using the incompressibility

condition, i.e., J = 1 , and assuming that r(0) = 0 to fix the rigid body translation of the body, we
find that r(R) =R . Hence, the standard Euclidean metric for S = R3 in cylindrical coordinates
(r, θ, z) reads g= diag(1, R2, 1) and the only non-zero Christoffel symbols are γrθθ =−R and
γθrθ = 1

R . The Finger deformation tensor is written as

b] =

 1 0 0

0 1
R2 − f(R)

R2

0 − f(R)
R2 1 +

f2(R)
R2

 .

Following (2.5a) and denoting α(R) = 2W̄I1(R, I1(R), I2(R)) and β(R) = 2W̄I2(R, I1(R), I2(R)) ,
the non-zero Cauchy stress components read

σrr =−p(R,Θ,Z) + α(R) +

(
f2(R)

R2
+ 2

)
β(R) , σθθ =

1

R2
[−p(R,Θ,Z) + α(R) + 2β(R)] ,

σzz =−p(R,Θ,Z) +

(
f2(R)

R2
+ 1

)
α(R) +

(
f2(R)

R2
+ 2

)
β(R) , σθz =−f(R)

R2
[α(R) + β(R)] .

Note that I1(R) = I2(R) = 3 + f2(R)/R2. The θ and z-equilibrium equations imply that p= p(R) ,
and the radial equilibrium equation is simplified to read σrr,R + 1

Rσ
rr −Rσθθ = 0. Assuming a

traction-free boundary condition on the boundary of the cylinder at R=Ro , we solve the above
equation for p= p(R) and it follows that the non-zero Cauchy stress components are

σrr =

∫ Ro

R

f2(ξ)

ξ3
β(ξ)dξ , σθθ =

1

R2

[∫ Ro

R

f2(ξ)

ξ3
β(ξ)dξ − f2(R)

R2
β(R)

]
,

σzz =

∫ Ro

R

f2(ξ)

ξ3
β(ξ)dξ +

f2(R)

R2
α(R) , σθz =−f(R)

R2
[α(R) + β(R)] .

(4.1)

Next we formulate the governing equations for superposed small elastic deformation
and compute the incremental deformation and residual stresses due to the perturbation δb .
In cylindrical coordinates (r, θ, z), we look for solutions of the form δϕ(R,Θ) =U(R,Θ) =

(δr(R,Θ), δθ(R,Θ), δz(R,Θ)). Hence,∇gU reads

Ua|b =

 δr,R δr,Θ −Rδθ 0

δθ,R + δθ
R δθ,Θ + δr

R 0

δz,R δz,Θ 0

 .
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Recalling that the linearized strain reads ε= 1
2

(
∇gU [ +

[
∇gU [

]T)
, one can write

ε=


δr,R

1
2

(
δr,Θ +R2δθ,R

)
1
2δz,R

1
2

(
δr,Θ +R2δθ,R

)
R2 (δθ,Θ + 1

R δr
)

1
2δz,Θ

1
2δz,R

1
2δz,Θ 0

 .

Note that δG:G] = 0, and hence, the incompressibility condition δJ = 0 using (3.1) is simplified
to read

1

R
(Rδr),R + δθ,Θ = 0 . (4.2)

In the absence of body forces, the equilibrium equation (3.10) simplifies to read

divgδσ +∇g∇gU :σ= 0 , (4.3)

where we recall that δσ=
(
C:ε+ D:δG− δp g] + 2p ε]

)
, δp= δp(R,Θ) is the Lagrange

multiplier associated with the incompressibility condition δJ = 0 (4.2), and p= p(R) is the
Lagrange multiplier associated with the incompressibility condition J = 1 . Note that ∇g∇gU
can be written in local coordinates as

Ua|bc =



 δr,RR

−Rδθ,R−
δr,Θ
R +δr,RΘ

0


 −Rδθ,R −

δr,Θ
R +δr,RΘ

−2Rδθ,Θ+δr,ΘΘ+Rδr,R − δr
0


 0

0

0


2δθ,R
R +δθ,RR

Rδr,R−δr
R2 +δθ,RΘ

0




Rδr,R−δr
R2 +δθ,RΘ

δθ,ΘΘ+Rδθ,R+
2δr,Θ
R

0


 0

0

0

 δz,RR

− δz,ΘR +δz,RΘ
0


 −

δz,Θ
R +δz,RΘ

δz,ΘΘ+Rδz,R
0


 0

0

0




.

(4.4)
For the sake of simplifying the calculations, let us assume that the body is made of a generalized
neo-Hookean solid, i.e., the energy function has the formW = W̄(I1) . Hence, it follows from (4.1)
that the Cauchy stress reads

σ=

 0 0 0

0 0 −2
f(R)
R2 W̄I1

0 −2
f(R)
R2 W̄I1 2

f2(R)
R2 W̄I1

 . (4.5)

Thus, recalling that ∇g∇gU :σ=Ua|bcσ
bc∂a , one finds from (4.4) and (4.5) that ∇g∇gU :σ= 0 .

Also, following (3.11), the elasticity tensors simplify to

C:ε= 4W̄I1I1(b]:ε)b] , D:δG=−2W̄I1I1(C]:δG)b] − 2W̄I1ϕt∗δG
] . (4.6)

However, using the incompressibility condition (4.2), we have b]:ε= 1
R (Rδr),R + δθ,Θ −

f
R2 δz,Θ =− f

R2 δz,Θ . Therefore

C:ε=
1

R4

 −4R2fW̄I1I1δz,Θ 0 0

0 −4fW̄I1I1δz,Θ 4f2W̄I1I1δz,Θ

0 4f2W̄I1I1δz,Θ −4f
(
R2 + f2

)
W̄I1I1δz,Θ

 .

On the other handC]:δG=−2 f
R2 δf , and one can easily obtain

D:δG=


4
R2 W̄I1I1fδf 0 0

0 4
R4 W̄I1I1fδf −2

(
1
R2 W̄I1 + 2f2

R4 W̄I1I1

)
δf

0 −2
(

1
R2 W̄I1 + 2f2

R4 W̄I1I1

)
δf 4

(
¯1

R2WI1
+R2+f2

R4 W̄I1I1

)
fδf

 .
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Therefore, the equilibrium equations (4.3) simplify to read

divgδσ= 0 , (4.7)

where

δσrr =
4fW̄I1I1

R2

(
δf − δz,Θ

)
+ 4W̄I1δr,R − δp , δσrθ = 2W̄I1

(
δr,Θ
R2

+ δθ,R

)
,

δσθθ =
4fW̄I1I1

R4

(
δf − δz,Θ

)
− 1

R2

(
δp+ 4W̄I1δr,R

)
,

δσθz =−
2
(

2f2W̄I1I1 +R2W̄I1

)
R4

(
δf − δz,Θ

)
, δσrz = 2W̄I1δz,R ,

δσzz =
4f

R2
[(W̄I1 + W̄I1I1)δf − W̄I1I1δz,Θ] +

4f3W̄I1I1

R4

(
δf − δz,Θ

)
− δp .

(4.8)

Writing (4.7) in components along with the incompressibility condition (4.2) gives the following
system of partial differential equations

∂

∂R

[
4fW̄I1I1

R2
δz,Θ − 4W̄I1δr,R + δp

]
−

2W̄I1

R2

[
4Rδr,R + δr,ΘΘ +R2δθ,RΘ

]
=

∂

∂R

[
4fW̄I1I1

R2
δf

]
,

(4.9a)

∂

∂R

[
2W̄I1

R2

(
δr,Θ +R2δθ,R

)]
−

4fW̄I1I1

R4
δz,ΘΘ

+
2W̄I1

R3

[
3δr,Θ − 2Rδr,RΘ + 3R2δθ,R

]
− 1

R2
δp,Θ =−

4fW̄I1I1

R4
δf,Θ ,

(4.9b)

∂

∂R

[
2W̄I1δz,R

]
+

2W̄I1

R
δz,R

+
4f2W̄I1I1 + 2R2W̄I1

R4
δz,ΘΘ =

[
4f2W̄I1I1

R4
+

2W̄I1

R2

]
δf,Θ ,

(4.9c)

δr +Rδr,R +Rδθ,Θ = 0 . (4.9d)

The boundary conditions corresponding to zero incremental boundary traction read
δσrr (Ro, Θ) = 0 , δσrθ (Ro, Θ) = 0 , and δσrz (Ro, Θ) = 0, which following (4.8) can be written
as [

4W̄I1δr,R −
4fW̄I1I1

R2
δz,Θ − δp

]
(Ro,Θ)

=−
[

4fW̄I1I1

R2
δf

]
(Ro,Θ)

, (4.10a)

[
δr,Θ
R2

+ δθ,R

]
(Ro,Θ)

= 0 , (4.10b)

δz,R (Ro, Θ) = 0 . (4.10c)

In order to fix the rigid body motion of the cylinder, we assume that

δr(0, Θ) = 0 , δθ(0, Θ) = 0 , δz(0, Θ) = 0 . (4.11)

Note that the continuity of the traction across any radial plane of constant Θ gives δσθz (R,Θ) =

δσθz (R,Θ + 2π) , δσθθ (R,Θ) = δσθθ (R,Θ + 2π) , and δσθr (R,Θ) = δσθr (R,Θ + 2π) . Also,
in order to preserve the structural integrity of the cylinder, one must have δr (R,Θ) =

δr (R,Θ + 2π) , δθ (R,Θ) = δθ (R,Θ + 2π) , and δz (R,Θ) = δz (R,Θ + 2π). Thus, it follows that
δr , δθ , δz , and δp are 2π-periodic functions with respect to Θ .

Note that δz = δz(R,Θ) can be obtained from (4.9c). Given the solution δz = δz(R,Θ) for (4.9c),
we observe that the following functions are the unique solution for the system of linear ordinary
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differential equations (4.9) satisfying the boundary conditions (4.10) and (4.11):

δr= 0 , δθ= 0 , δp=
4fW̄I1I1

R2

(
δf − δz,Θ

)
. (4.12)

Therefore, following (4.8) and (4.12), the variation of the Cauchy stress tensor reads

δσ=


0 0 2W̄I1δz,R

0 0 −
(

2W̄I1

R2 +
4f2W̄I1I1

R4

)(
δf−δz,Θ

)
2W̄I1δz,R −

(
2W̄I1

R2 +
4f2W̄I1I1

R4

)(
δf−δz,Θ

) 4fW̄I1

R2 δf+
4f3W̄I1I1

R4

(
δf−δz,Θ

)
 .

(4.13)
Let us first solve (4.9c) for δz = δz(R,Θ) to complete the solution (4.12). Recalling that δz is

2π-periodic with respect to Θ and assuming that δf is periodic as well, we can represent them by
the following Fourier series

δz =

∞∑
k=−∞

δzk(R)eikΘ , δf =

∞∑
k=−∞

δfk(R)eikΘ , (4.14)

where i =
√
−1 , and for k ∈Z , δzk and δfk are the complex-valued Fourier coefficients given by

δzk(R) =
1

2π

∫ 2π

0
δz(R, ζ)e−ikζdζ , δfk(R) =

1

2π

∫ 2π

0
δf(R, ζ)e−ikζdζ . (4.15)

Substituting the Fourier series (4.14) into the partial differential equation (4.9c) for k ∈Z , we find

2W̄I1δzk
′′+

[
2
dW̄I1

dR
+

2W̄I1

R

]
δzk
′−

[
4f2W̄I1I1

R4
+

2W̄I1

R2

]
k2δzk=

[
4f2W̄I1I1

R4
+

2W̄I1

R2

]
ikδfk ,

(4.16)
where δzk

′ = dδzk
dR , and δzk

′′ = d2δzk
dR2 . Note that δfk can also be written as δfk =

1
2π

∫R
0 ξδbk(ξ)dξ , where δbk is the kth Fourier coefficient of δb . The boundary conditions for δz

from (4.10) and (4.11) transform in terms of its Fourier coefficients to the following relations

δzk(0) = 0 , δzk
′(Ro) = 0, k ∈Z. (4.17)

Therefore, we have transformed the real partial differential equation (4.9c) into a set of complex
ordinary differential equations (4.16).

(c) Energy of a perturbed dislocation distribution
We next calculate the change in energy due to a small perturbation of the defect distribution to
the first order in the defect perturbation. For a given distribution of screw dislocations, the energy
per unit length in a cylinder made of a generalized neo-Hookean solid is written as

W =

∫ 2π

0

∫ Ro

0
W(I1(R,Θ))RdRdΘ .

Therefore, the variation of the energy following an arbitrary perturbation δb= δb(R,Θ) is written
as

δW =

∫ 2π

0

∫ Ro

0

dW(I1ε(R,Θ))

dε

∣∣∣∣
ε=0

RdRdΘ=

∫ 2π

0

∫ Ro

0
WI1(I1(R,Θ))δI1(R,Θ))RdRdΘ .

Note that δI1 = 2ε:b] + δG:C] =
2f(R)
R2

[
δf(R,Θ)− δz,Θ(R,Θ)

]
. Therefore8

δW =

∫ Ro

0

∫ 2π

0

2f(R)

R
WI1(I1(R))δf(R,Θ)dΘdR . (4.18)

8Note that since δz = δz(R,Θ) is periodic with repect toΘ, one has
∫ 2π
0

δz,Θ(R,Θ)dΘ= δz(R, 2π)− δz(R, 0) = 0 .
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Remark 4.1. Note that (4.18) can be written as

δW =

∫ Ro

0

4πf(R)

R
WI1(I1(R))δf0(R)dR , (4.19)

where δf0(R) = 1
2π

∫ 2π
0 δf(R,Θ)dΘ is the angular mean value of δf . On the other hand, one can write

δf0(R) =
1

2π

∫ 2π

0
δf(R,Θ)dΘ=

1

2π

∫ 2π

0

1

2π

∫ R

0
ξδb(ξ,Θ)dξdΘ=

1

2π

∫ R

0
ξδb0(ξ)dξ,

where

δb0(R) =
1

2π

∫ 2π

0
δb(R,Θ)dΘ. (4.20)

Hence, the energy variation depends only on δb0(R) —the angular mean value of the perturbation
δb(R,Θ).

(d) Perturbed dislocations in incompressible neo-Hookean solids
Let us consider an incompressible homogeneous neo-Hookean solid, i.e., W̄ (I1) = µ

2 (I1 − 3) ,
where µ is the shear modulus for infinitesimal strains, and an arbitrary perturbation δb=

δb(R,Θ).

Remark 4.2. Note that even though the energy per unit length along a single screw dislocation line in a
neo-Hookean solid is unbounded as shown in [25] (see also [44]), energy is not necessarily unbounded for
distributed screw dislocations. In particular, for a radially-symmetric distribution of screw dislocations, the
energy per unit length in a neo-Hookean solid is written as

W = 2π

∫ Ro

0

µ

2
(I1(ξ)− 3) ξdξ = πµ

∫ Ro

0

f2(ξ)

ξ
dξ .

Let us assume, as an example for computing the energy, the following Burgers’ vector distribution

b(R) =

{
bi 0<R≤Ri ,

0 Ri <R≤Ro ,
(4.21)

where Ri ≤Ro is the radius of a cylinder made of a solid with a uniform Burgers’ vector bi , while the
hollow cylinder Ri <R≤Ro is dislocation-free. Thus, one finds

f(ξ) =
1

2π

∫ ξ

0
ζb(ζ)dζ =


biξ

2

4π
0≤ ξ ≤Ri ,

biR
2
i

4π
Ri < ξ ≤Ro .

(4.22)

Therefore

W = πµ

∫ Ri

0

1

ξ

(
biξ

2

4π

)2

dξ + πµ

∫ Ro

Ri

1

ξ

(
biR

2
i

4π

)2

dξ =
µb2iR

4
i

64π

[
1 + 4 log

(
Ro
Ri

)]
<∞ .

In the following computation, we consider an arbitrary radially-symmetric Burgers’ vector
distribution b= b(R) and an arbitrary perturbation δb= δb(R,Θ) . For a neo-Hookean solid, the
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ordinary differential equations (4.16) for k ∈Z simplify and read

R2δzk
′′ +Rδzk

′ − k2δzk = ikδfk . (4.23)

Solving (4.23), one finds that for k ∈Z

δzk(R) =
R2k +R2k

o

2RkRko

ck + i

∫ 1

R
Ro

(
ξk − ξ−k

)
δfk(Roξ)

2ξ
dξ


+
R2k −R2k

o

2RkRko

dk − i

∫ 1

R
Ro

(
ξk + ξ−k

)
δfk(Roξ)

2ξ
dξ

 ,
(4.24)

for some complex constants ck and dk . By using the boundary condition (4.17) δzk
′(Ro) = 0 , it

follows that dk = 0 . We observe that ck = δzk(Ro) , and from (4.15), one observes that δz−k =

δz∗k .9 Thus, c−k = c∗k . Also, note that δf−k = δf∗k . Therefore, following (4.24) and by using (4.14),
it follows that

δz(R,Θ) = c0 +

∞∑
k=1

R2k +R2k
o

2RkRko

[
2
(
<(ck) cos (kΘ)−=(ck) sin (kΘ)

)

−
∫ 1

R
Ro

(
ξk − ξ−k

)(
<[δfk(Roξ)] sin (kΘ) + =[δfk(Roξ)] cos (kΘ)

)
ξ

dξ

]

+

∞∑
k=1

R2k−R2k
o

2RkRko

∫ 1

R
Ro

(
ξk+ξ−k

)(
<[δfk(Roξ)] sin (kΘ)+=[δfk(Roξ)] cos (kΘ)

)
ξ

dξ ,

(4.25)

where <(z) and =(z) denote the real and imaginary parts of a complex number z , respectively.
Note that since δfk(R) = 1

2π

∫ 2π
0 δf(R, ζ)e−ikζdζ , one can write

< [δfk(R)] =
1

2π

∫ 2π

0
δf(R,Θ) cos (kΘ) dΘ , = [δfk(R)] =− 1

2π

∫ 2π

0
δf(R,Θ) sin (kΘ) dΘ .

Remark 4.3. Note that for a neo-Hookean solid, the incremental deformation is independent of the finite
radially-symmetric dislocation distribution b= b(R) . Indeed, the governing equation (4.23) holds for any
b= b(R) . However, as can be seen in (4.13), the incremental stress field, and in particular δσzz , depends
on the initial dislocation distribution.

Let us now simplify the solution (4.25) for a particular Burgers’ vector perturbation given by

δb(R,Θ) = δb0(R) +
R

Ro

(
1− R

Ro

)2

[b1 cosΘ + b2 sinΘ] , (4.26)

for some R-dependent function δb0 = δb0(R) , and constants b1 and b2 . Note that the only non-
zero Fourier coefficients of δb in (4.26) are δb0 , δb1 , and δb−1 . For k=−1, 1 , one finds

δbk(R) =
1

2
(b1 − ikb2)

R

Ro

(
1− R

Ro

)2

.

Therefore, the only non-zero Fourier coefficients of δf are δf0 , δf1 , and δf−1. They read

δf0(R) =
1

2π

∫ R

0
ξδb0(ξ)dξ and δfk(R) =

b1 − ikb2
4π

(
R5

5R3
o
− R4

2R2
o

+
R3

3Ro

)
for k=−1, 1 .

(4.27)

First, note that following (4.24), for k 6=−1, 1 one obtains δzk(R) = ck
R2k+R2k

o

2RkRko
. However, since

we are looking for a solution that is bounded, it follows that for k 6=−1, 0, 1 , one has ck = 0 .
9We denote by x∗ the complex conjugate of a complex number x .
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Figure 1. Visualization of the solution (4.29) for a cylinder of radius Ro with b1Ro = 15 and b2Ro = 10 . Left: 3D

visualization of the deformation of a cross section of the cylinder. Right: Profile of deformation of different radial lines.

Thus, one finds following (4.25) that

δz(R,Θ) = c0 −
b1 (R−Ro)2

(
R4 − 2RoR

3 + 2R3
oR+R4

o

)
+ 240π=(c1)R2

o

(
R2 +R2

o

)
240πR3

oR
sinΘ

+
b2 (R−Ro)2

(
R4 − 2RoR

3 + 2R3
oR+R4

o

)
+ 240π<(c1)R2

o

(
R2 +R2

o

)
240πR3

oR
cosΘ .

(4.28)

Further, to ensure that (4.28) is bounded, one must have b1R
2
o + 240π=(c1) = 0, and b2R

2
o +

240π<(c1) = 0. Thus, =(c1) =−b1R2
o/(240π), and <(c1) =−b2R2

o/(240π). Next, by enforcing the
boundary condition (4.17) δz(0, Θ) = 0 to fix the rigid body motion, one finds c0 = 0 . Therefore,
it follows that

δz(R,Θ) =
b2 cosΘ − b1 sinΘ

240πR3
o

R
(
R4 − 4R3Ro + 5R2R2

o − 4R4
o

)
. (4.29)

In Fig. 1, we plot the solution (4.29) for a cylinder of radius Ro subject to a perturbation (4.26)
such that b1Ro = 15 and b2Ro = 10 . Note that the numerical values shown in Fig. 1 should
be multiplied by a small ε to give the incremental deformation. Given that z =Z for the finite
dislocation distribution, the total deformation reads: zε =Z + εδz + o(ε) . Recall, as noted earlier,
that the state of deformation of a cylinder made of a neo-Hookean solid is independent of b=

b(R); it only depends on the perturbation —compare this to Example (e) where the deformation
of a cylinder made of a power law material actually depends on the finite dislocation distribution
b= b(R) .

Using (4.1) and (4.13), one finds the following total stress in the perturbed configuration (recall
that the total stress in the perturbed configuration for a small enough ε is σε =σ + εδσ + o(ε).)

σε =

 0 0 εµδz,R

0 0 −µ f(R)
R2 − ε µR2

(
δf − δz,Θ

)
εµδz,R −µ f(R)

R2 − ε µR2

(
δf − δz,Θ

)
µ
f2(R)
R2 + ε 2µ

R2 fδf

+ o(ε) ,
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where

δf =
1

2π

∫ R

0
ξδb0(ξ)dξ +

(
R5

5R3
o
− R4

2R2
o

+
R3

3Ro

)
b1 cosΘ + b2 sinΘ

2π
,

δz,R =
(

5R4 − 16R3Ro + 15R2R2
o − 4R4

o

) b1 sinΘ − b2 cosΘ

240πR3
o

,

δf − δz,Θ =
1

2π

∫ R

0
ξδb0(ξ)dξ +R

(
23R4 − 56R3Ro + 35R2R2

o + 4R4
o

) b1 cosΘ + b2 sinΘ

240πR3
o

.

Let us now compute the variation of the energy due to a dislocation distribution perturbation.
Following (4.19), one has

δW =

∫ Ro

0

2πµ

R
f(R)δf0(R)dR .

Assuming the finite dislocation distribution (4.21), the variation of the energy reads

δW =

∫ Ri

0

µbiR

4π

∫ R

0
ξδb0(ξ)dξdR+

∫ Ro

Ri

µbiR
2
i

4Rπ

∫ R

0
ξδb0(ξ)dξdR .

Let us assume that the total Burgers’ vector of the perturbation is zero so that the perturbation
does not change the total Burgers’ vector of the original finite dislocation distribution b(R) ,
i.e.,

∫Ro
0

∫ 2π
0 Rδb(R,Θ)dΘdR= 0 . In terms of the angular mean value of the perturbation this

is written as
∫Ro
0 Rδb0(R)dR= 0 . We consider in particular a Burgers’ vector perturbation such

that its angular mean value —cf. (4.20) —is given by

δb0(R) = 15b0
R

Ro

(
1− R

Ro

)2(
1− 2

R

Ro

)
, (4.30)

for some constant b0. For this perturbation one obtains

δW =
µbibo

(
35R8

i − 144R7
iRo + 210R6

iR
2
o − 112R5

iR
3
o + 14R2

iR
6
o

)
672πR4

o
.

Note that for any Ri such that 0<Ri <Ro , the energy variation δW has the same sign as bibo .
For Ri = 0 , δW = 0 and δW/(bibo) is monotonically increasing as a function of Ri. In particular,
for Ri > 0, δW 6= 0, and hence the initial dislocation distribution is not in equilibrium.

(e) Perturbed dislocations in incompressible power law solids
Let us consider an arbitrary perturbation δb= δb(R,Θ) in the case of an incompressible power
law solid for which the energy function is written as

W̄ (I1) =
µ

2c

{[
1 +

c

n
(I1 − 3)

]n
− 1
}
, (4.31)

where µ is the shear modulus for infinitesimal strains, n is a hardening exponent, and c is another
material constant. Based on the work of Knowles [45] on anti-plane shear fields, Rosakis and
Rosakis [26] observed that when n= 1

2 , the energy per unit length along a single screw dislocation
line is finite. We assume in what follows that n= 1

2 and c= 1 . For such a power law material, the
ordinary differential equation (4.16) for k ∈Z is simplified to read(

2Rf2 +R3
)
δzk
′′ +

(
R2 + 4f2 − 2Rff ′

)
δzk
′ − k2Rδzk = ikRδfk , (4.32)

along with the boundary conditions (4.17): δzk(0) = 0 , δzk
′(Ro) = 0 . In this example we assume

the Burgers’ vector distribution (4.21) and the Burgers’ vector perturbation (4.26). Therefore, f
and the non-zero Fourier coefficients of δf are again given by (4.22) and (4.27), respectively. We
numerically solve (4.32) and in Fig. 2 plot the profile of the deformation δz = δz(R,Θ) of a cross
section of a cylinder of radiusRo with the finite dislocation distribution (4.21) such that biRo = 25
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Figure 2. Visualization of the deformation δz = δz(R,Θ)—solution of (4.32)—of a cylinder of radius Ro with the finite

dislocation distribution (4.21) such that biRo = 25 and Ri/Ro = 0.5 , and subject to the Burgers’ vector perturbation

(4.26) such that b1Ro = 15 and b2Ro = 10 . Left: 3D visualization of the deformation of a cross section of the cylinder.

Right: Profile of deformation of different radial lines.

and Ri/Ro = 0.5 , and subject to the Burgers’ vector perturbation (4.26) such that b1Ro = 15 and
b2Ro = 10 .

The total stress in the perturbed configuration is computed following (4.1), and (4.13). Its non-
zero components read (Recall that f is given by (4.22).)

σrzε =
εµ√

2f(R)2

R2 + 1
δz,R + o(ε) ,

σθzε =− µf(R)

R2
√

2f(R)2

R2 + 1
− εµ

 1

R2
√

2f(R)2

R2 + 1
− 2f2

R4
(

2f(R)2

R2 + 1
)3/2

(δf − δz,Θ)+ o(ε) ,

σzzε =
µf2(R)

R2
√

2f(R)2

R2 + 1
+ ε

2µf

R2
√

2f(R)2

R2 + 1
δf − ε 2µf3

R4
(

2f(R)2

R2 + 1
)3/2

(
δf − δz,Θ

)
+ o(ε) .

(4.33)

The variation of the energy is written as

δW =

∫ Ri

0

µbiR

4π

√
b2iR

2

8π2 + 1

∫ R

0
ξδb0(ξ)dξdR+

∫ Ro

Ri

µbiR
2
i

4Rπ

√
b2iR

4
i

8π2R2 + 1

∫ R

0
ξδb0(ξ)dξdR .

Assuming a dislocation perturbation with a vanishing total Burgers’ vector such that its mean
angular value is given by (4.30) one can compute the energy variation and find that it is not zero,
i.e., the initial dislocation distribution is not in equilibrium.

5. Conclusion
In this paper we introduce a geometric theory of small-on-large anelasticity to study the
induced small deformations due to a perturbation of a given distribution of (finite) eigenstrains
superposed on the finite deformation that corresponds to the original distribution. Given a
nonlinear solid with a given distribution of eigenstrains, a perturbation of the eigenstrains
changes the equilibrium configuration and its state of stress. In the geometric formulation
of anelasticity, a perturbation of the anelasticity source corresponds to a perturbation of the
geometry of the material manifold. We find the incremental residual stresses due to the
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perturbation fields and derive the governing equations for the induced small deformations
superposed on the original finite deformation. Finally, to illustrate the capability of the theory,
we consider an axi-symmetric distribution of parallel screw dislocations in an incompressible
isotropic solid and calculate the perturbation fields when the body undergoes an arbitrary small
perturbation in the Burgers’ vector distribution. For generalized neo-Hookean solids, we are able
to reduce the governing equations to a single ordinary differential equation. Furthermore, when
the solid is neo-Hookean, we find a closed-form solution for the governing equations. We also
consider the power law solid constitutive model for which we solve the governing equations
numerically.
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