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Abstract

In this paper, we revisit the mathematical foundations of nonlinear viscoelasticity. We study the un-
derlying geometry of viscoelastic deformations, and in particular, the intermediate configuration. Starting

from the direct multiplicative decomposition of the deformation gradient F =
e

F
v

F , into elastic and viscous

distortions
e

F and
v

F , respectively, we point out that
v

F can be either a material tensor (
e

F is a two-point

tensor) or a two-point tensor (
e

F is a spatial tensor). We show, based on physical grounds, that the sec-
ond choice is unacceptable. It is assumed that the free energy density is the sum of an equilibrium and
a non-equilibrium part. The symmetry transformations and their action on the total, elastic, and viscous
deformation gradients are carefully discussed. Following a two-potential approach, the governing equations
of nonlinear viscoelasticity are derived using the Lagrange–d’Alembert principle. We discuss the constitutive
and kinetic equations for compressible and incompressible isotropic, transversely isotropic, orthotropic, and
monoclinic viscoelastic solids. We finally semi-analytically study creep and relaxation in three examples of
universal deformations.

Keywords: Nonlinear viscoelasticity, multiplicative decomposition, intermediate configuration, anisotropic
solids.
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1 Introduction

The linear theory of viscoelasticity was formulated 150 years ago by Boltzmann [1874] for isotropic solids (and
by Volterra, 1909 for anisotropic solids), see Gurtin and Sternberg [1962] and Coleman and Noll [1961]. The
nonlinear theories of viscoelasticity appeared much later. Rivlin and Ericksen [1955] formulated a theory of
viscoelasticity for isotropic solids in which stress at a material point depends on the deformation gradient and
gradients of velocity, acceleration, and higher order accelerations up to some finite order at that point.1 Most
of the early studies of finite viscoelasticity [Pipkin, 1964; Rivlin, 1965; Pipkin and Rogers, 1968] were based on
the theory of fading memory [Green and Rivlin, 1957; Green et al., 1959; Green and Rivlin, 1959; Wang, 1965].

Much of the recent developments in the literature of viscoelasticity stem from the pioneering work of Green
and Tobolsky [1946] on rubber-like viscoelastic relaxation and its subsequent extension by Lubliner [1985] to fi-
nite rubber-like viscoelasticity using the Bilby–Kröner–Lee decomposition following [Sidoroff, 1974]. As detailed
in [Sadik and Yavari, 2017a], although largely credited to Lee and Liu [1967] and Lee [1969], the multiplica-
tive decomposition of the deformation gradient was first formally introduced by Bilby et al. [1955] and Kröner
[1959]. In the context of nonlinear viscoelasticity, it was first introduced by Sidoroff [1974] inspired by its use
in elasto-plasticity [Berdichevskii and Sedov, 1967; Lee and Liu, 1967; Lee, 1969; Sidoroff, 1973].2 Sidoroff
[1974] formulated a finite deformation viscoelastic model by assuming a free energy that depends explicitly
on both the total deformation gradient and its elastic (or viscous) part. Constraining the free energy by the
Clausius–Duhem inequality, he found the constitutive relations—including an additive split of the stress into
elastic and viscoelastic parts without assuming any such split of the free energy. He then introduced a quadratic
dissipation potential following the Casimir–Onsager’s reciprocity principle to obtain evolution equations. Fol-
lowing Green and Tobolsky [1946] and Sidoroff [1974], Lubliner [1985] considered the nonelastic part of the
deformation gradient as an additional internal variable governed by a linear rate equation. Without assuming
isotropy, he formulated a constitutive model such that the free energy is additively split into an elastic part
uncoupling the volumetric and deviatoric contributions of the deformation, and a viscous part that depends
on the additional internal variable. Latorre and Montáns [2016] explicitly acknowledged that the intermediate

1There are some recent works on “nonlinear viscoelasticity of strain rate type” [Şengül, 2021; Mielke and Roub́ıček, 2020; Badal
et al., 2023], which is a very special case of the Rivlin–Ericksen theory. Apparently, the authors of these recent papers were not
aware of the seminal paper of Rivlin and Ericksen [1955].

2Note, however, that the difference in the underlying conceptual rational for the use of the multiplicative decomposition of the
deformation gradient in viscoelasticity as opposed to anelasticity has been to the best of our knowledge so far ignored—or at best
not explicitly discussed—in the literature. As we later point out, this does have important consequences on the nature of the
so-called intermediate configuration and the validity of the model otherwise.
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configuration in viscoelasticity is not stress free (after their Eq. (20) they write “(i.e., the intermediate config-
uration is not strictly speaking a “stress-free” configuration)”). Latorre and Montáns [2016] suggested using a

reverse decomposition of deformation gradient in viscoelasticity, i.e., F =
e

F
v

F =
v

F
e

F (see also Bahreman et al.,
2022 who compared the direct and reverse decompositions for viscoelasticity. It should be noted that these
authors assumed the elastic and viscous distortions to be compatible (see Eqs. (8) & (12)), which is incorrect.).
Similar to anelasticity [Yavari and Sozio, 2023], the reverse decomposition is expected to result in an equivalent
theory.

Based on the generalized one-dimensional linear Maxwell rheological model, Simo [1987] first sketches an
alternative formulation of the standard linear solid that he subsequently generalizes to a nonlinear formulation of
viscoelastic solids. In his formulation, he assumes an additive split of the free energy into an initial (elastic) and
a non-equilibrium contribution. Similarly to Lubliner [1985], he uncouples the bulk and deviatoric components
of the deformation gradient to forgo the isotropy assumption in his constitutive model. The viscous response
is introduced by considering a strain-like tensor as an internal variable in the non-equilibrium part of the free
energy; a variable whose evolution is governed by a linear rate constitutive equation. When specialized to
the particular case of neo-Hookean solids, he shows that his theory is consistent with the Bilby–Kröner–Lee
decomposition with the internal variable related to the non-elastic contribution of the deformation gradient
as in [Lubliner, 1985]. It is worth mentioning that Simo’s finite linear convolution model has never been
demonstrated to conform to the second law. For a recent relevant study, see Liu et al. [2021].

Le Tallec et al. [1993] assumed the multiplicative decomposition of the deformation gradient into elastic and
viscous parts. For incompressible viscoelastic solids, they assumed that both the total deformation gradient
and the viscous deformation gradient (or equivalently both the elastic and viscous deformation gradients) are
volume preserving (the same assumption had been made earlier by Leonov, 1976). They assumed an additive

split of the free energy density into equilibrium and non-equilibrium parts that depend on C and
e

C, respectively.

Finally, they assumed a dissipation potential that explicitly depends on
v̇

C, i.e., ϕ = ϕ(
v̇

C). For fiber-reinforced

viscoelastic composites, Nguyen et al. [2007] used an isotropic dissipation potential written in terms of
v

C and

identical to that used by Reese and Govindjee [1998a]. When written in terms of
v

C, the quadratic dissipation
potential is expressed in terms of two positive viscosities (deviatoric and volumetric).

Without any mention of the Bilby–Kröner–Lee decomposition, Holzapfel and Simo [1996] introduced an ad-
ditive decomposition of the free energy into a purely thermoelastic contribution and a non-equilibrium contribu-
tion; where, following Coleman and Gurtin [1967], the latter is described as a configurational free energy depen-
dent on a set of additional internal variables, akin to strain, characterizing the irreversible viscoelastic response of
the material. Starting from the generalized one-dimensional linear Maxwell rheological model [Holzapfel, 1996],
they introduced an evolution equation for the conjugate internal non-equilibrium stresses following [Valanis,
1972].

Starting with the generalized linear Maxwell rheological model and generalizing the constitutive model
of Lubliner [1985], Reese and Govindjee [1998b,a] proposed an additive split of the free energy into an equilibrium
and a non-equilibrium part. The equilibrium part depends on the total deformation gradient and gives the free
energy in the thermodynamic equilibrium state at infinite time. The non-equilibrium part of the free energy
depends however solely on the elastic part of the Bilby–Kröner–Lee deformation gradient decomposition and
eventually vanishes as the body relaxes in the thermodynamic equilibrium state. In the framework of Holzapfel
and Simo [1996], they effectively took the inelastic part of the deformation gradient to be the internal variable
of interest, and instead assumed its evolution to be given by a positive semi-definite quadratic dissipation
potential; a sufficient condition to fulfill the second law of thermodynamics. More recently, Kumar and Lopez-
Pamies [2016] formulated nonlinear viscoelasticity using a two-potential approach. They critically reviewed
some of the previous works in the literature on the kinetic equations and pointed out some inconsistencies
regarding objectivity (material-frame-indifference) of some of the proposed kinetic equations.

There have been attempts in the literature to model anisotropic nonlinear viscoelastic solids. Biot [1954]
presented a Lagrangian treatment of anisotropic viscoelasticity based on Onsager’s reciprocal relations [Onsager,
1931] using potential energy and dissipation function and introduced operational tensors to relate stress and
strain. For a viscoelastic solid reinforced by one family of fibers (a transversely isotropic viscoelastic solid), Mero-
dio [2006] assumed that the Cauchy stress depends on the fiber orientation, the right Cauchy–Green strain, and
its time derivative, i.e., σ = σ(N,C, Ċ) , where N = N(X) is the unit tangent vector to the fiber at the
material point X . There have been several efforts in the literature in modeling nonlinear viscoelasticity of fiber-
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reinforced viscoelastic solids using the multiplicative decomposition of the deformation gradient [Nedjar, 2007;
Nguyen et al., 2007; Liu et al., 2019]. They assumed separate multiplicative decompositions of the deformation
gradient for the matrix and the fibers. Nguyen et al. [2007] assumed that the equilibrium and non-equilibrium
free energies have the same symmetry group. There have also been recent efforts in modeling viscoelasticity of
nematic liquid crystal elastomers [Wang et al., 2022]. We should also mention that there are several reviews
of viscoelasticity in the literature [Schapery, 2000; Drapaca et al., 2007; Banks et al., 2011; Wineman, 2020;
Şengül, 2021].

This paper is organized as follows. In §2, kinematics of viscoelasticity is discussed. In particular, we assume

the multiplicative decomposition F =
e

F
v

F, and the tensorial characters of
e

F and
v

F are carefully investigated.
Additive decomposition of the free energy density into an equilibrium and a non-equilibrium part is assumed.

In §3, balance of mass, balance of linear and angular momenta, and the kinetic equation for
v

F are derived, and
the constitutive relations are discussed. The balance of linear and angular momenta, and the kinetic equations

for
v

F are derived using a two-potential approach and the Lagrange–d’Alembert principle. The first and second
laws of thermodynamics are discussed and used to find the constitutive relations for viscoelastic solids. Material
symmetry in viscoelasticity is studied in §4. In particular, it is seen that the symmetry group acts on both the
equilibrium and non-equilibrium parts of the free energy, as well as the dissipation potential. The representation
of the Cauchy stress in terms of the material integrity basis is derived for transversely isotropic, orthotropic,
and monoclinic solids both in the compressible and incompressible cases. The dissipation potential and its
functional form for both isotropic and anisotropic solids is discussed. Three examples of universal deformations
of isotropic and anisotropic viscoelastic solids are analyzed in detail in §5. Concluding remarks are given in §6.

2 Kinematics, Free Energy, and Dissipation Potential

2.1 Kinematics

Let us consider a body that is made of a viscoelastic solid. We identify the body with an embedded 3-
submanifold B of the Euclidean ambient space S = R3 . We adopt the standard convention to denote objects
and indices by uppercase characters in the material manifold B (e.g., X ∈ B) and by lowercase characters in
the spatial manifold S (e.g., x ∈ S). We denote by {XA} , and {xa} , the local coordinate charts on B and S ,
respectively; by

{
∂A = ∂

∂XA

}
and

{
∂a = ∂

∂xa

}
, we denote the corresponding local coordinate bases, respectively;

and by
{
dXA

}
and {dxa} , we denote the corresponding dual bases. We also adopt Einstein’s repeated index

summation convention, e.g., uivi :=
∑
i u

ivi .
Motion is represented by a one-parameter family of maps φt : B → Ct ⊂ S , where Ct = φt(B) is the current

configuration of the body. A material point X ∈ B is mapped to x = x(X, t) = φt(X) = φX(t) . The Euclidean
ambient space has the flat metric g , which has the representation g = gab dx

a ⊗ dxb . For example, if {xa} are
Cartesian coordinates, the metric reads off g = δab dx

a ⊗ dxb . Given two vectors u ,w ∈ TxS—the tangent
space of S at x , their dot product is denoted by ⟨⟨u,w⟩⟩g = uawb gab . Given a vector u ∈ TxS and a 1-form
ω ∈ T ∗

xS—the cotangent space of S at x , their natural pairing is denoted by ⟨ω,u⟩ = ω(u) = ωa u
a . The

spatial volume form reads dv =
√
detg dx1 ∧ dx2 ∧ dx3 . Let ∇g be the Levi-Civita connection of (S,g) . We

denote its Christoffel symbols by γabc in the local coordinate chart {xa} . The Euclidean metric g induces
the Euclidean metric G on B . The natural distances in the body before deformation are calculated using the
metric G; this is the material metric and has the representation G = GAB dX

A ⊗ dXB . For example, if {XA}
are Cartesian coordinates, the metric reads off G = δAB dX

A ⊗ dXB ; in cylindrical coordinates {R,Θ, Z} , it
reads off G = dR⊗ dR+R2 dΘ⊗ dΘ+ dZ ⊗ dZ . Given two vectors U ,W ∈ TXB—the tangent space of B
at X , their dot product is denoted by ⟨⟨U,W⟩⟩G = UAWB GAB . Given a vector U ∈ TXB and a 1-form
Ω ∈ T ∗

XB—the cotangent space of B at X , their natural pairing is denoted by ⟨Ω,U⟩ = Ω(U) = ΩAUA . The

material volume form reads dV =
√
detG dX1 ∧ dX2 ∧ dX3 . Let ∇G be the Levi-Civita connection of (B,G) .

We denote its Christoffel symbols by ΓABC in the local coordinate chart {XA} .
A local elastic deformation is measured with respect to a local stress-free state and induces change of dis-

tances. It may be quantified by the derivative of the deformation mapping—the so-called deformation gradient,
denoted by F(X, t) = Tφt(X) : TXB → Tφt(X)Ct , which has components FaA = ∂φa/∂XA . The dual F⋆ of F is
defined as F⋆(X, t) : Tφt(X)Ct → TXB , ⟨α,FU⟩ = ⟨F⋆α,U⟩ , ∀U ∈ TXB , ∀α ∈ T ∗

φ(X)S , and reads in compo-

nents (F⋆)A
a
= FaA . The transpose FT of F is defined as FT(X, t) : Tφt(X)Ct → TXB , ⟨⟨FU,u⟩⟩g = ⟨⟨U,FTu⟩⟩G ,
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∀U ∈ TXB , ∀u ∈ Tφ(X)S , and has components
(
FT
)A

a
= GAB FbB gba . Note that FT = G♯F⋆g , where (.)♯ de-

notes the musical isomorphism for raising indices. The right Cauchy–Green—also known as Green—deformation
tensor is defined as C := FTF , and reads in components CAB = GAK FaK gab F

b
B . Note that C♭ agrees with

the pull-back of the spatial metric g by φ , i.e., C♭ = φ∗g = F⋆gF , where (.)♭ denotes the musical isomorphism
for lowering indices. The Piola deformation tensor is defined as B := C−1 = F−1F−T , and has components
BAB = (F−1)Aa g

ab(F−1)CbGCB . Note that B♯ agrees with the pull-back of the inverse material metric g♯ by
φ , i.e., B♯ = φ∗g♯ = F−1g♯F−⋆ . The left Cauchy–Green—also known as Finger—deformation tensor is defined
as b := FFT , and reads in components bab = F aAG

ABF cB gcb . Note that b♯ agrees with the push-forward
of the inverse of the material metric G♯ by φ , i.e., b♯ = φ∗G♯ = FG♯F⋆ . The inverse Finger deformation
tensor is denoted by c := b−1 = F−TF−1 , and has components CAb = gac(F−1)AcGAB(F

−1)Bb . Note that
c♭ agrees with the push-forward of the material metric G by φ , i.e., c♭ = φ∗G = F−⋆GF−1 . The Jaco-
bian of the motion relates the material and spatial volume elements as dv = JdV , and it can be shown that
J =

√
detC =

√
detg/detGdetF .3

The material velocity V of the motion is defined as V : B × R+ → TS ,V(X, t) := ∂φ(X, t)/∂t , and in com-

ponents reads Va = ∂φa

∂t . The spatial velocity is defined as v : φt(B)× R+ → TS , v(x, t) := V(φ−1
t (x), t) . The

material acceleration is defined as A : B × R+ → TS , A(X, t) := Dg
tV(X, t) , where Dg

t denotes the covariant
derivative along φX : t 7→ φ(X, t) . In components, Aa = ∂Va

∂t +γabcV
bVc . The spatial acceleration is defined as

a : φt(B)×R+ → TS , a(x, t) := A(φ−1
t (x), t) ∈ TxS , and in components reads, aa = ∂va

∂t + ∂va

∂xb v
b + γabc v

b vc .

2.2 Multiplicative decomposition of the deformation gradient

Let us consider a viscoelastic body in its loaded deformed state. If we proceed to unload the body, we observe an
instantaneous partial relaxation into an intermediate stressed state (that is embedded in the Euclidean ambient
space), followed by a slower relaxation back into its initial undeformed state. Note that in this experiment, the
intermediate state may, in general, still contain unresolved residual elastic strain. As a mater of fact, while the
instantaneous partial relaxation is purely elastic, the slow relaxation is, in general, not purely viscous and may
involve some residual elastic deformation that might have been prevented from resolving instantaneously.4

Instead of the global picture above, let us look at this thought experiment locally by considering a volume
element in a viscoelastic body in its loaded state, i.e., a small neighborhood of a spatial point—generally
deformed and stressed. We let this volume element be isolated and proceed to unload it independently of the
rest of the body. We then observe an instantaneous purely elastic relaxation of the total elastic strain in the
isolated volume element into an intermediate stressed state,5 followed by a slow viscous relaxation into its initial

undeformed state. The instantaneous local purely elastic unloading map is denoted by
e

F−1 . The slow final

local purely viscous relaxation map is denoted by
v

F−1 . Therefore, one has a local multiplicative decomposition

of the deformation gradient F =
e

F
v

F. The two maps
e

F and
v

F are incompatible, in general, i.e., global maps
v
φt : B → B and

e
φt : B → Ct (or v

φt : B → Ct and e
φt : Ct → Ct) such that

v

F = T
v
φt and

e

F = T
e
φt do not exist,

in general. Notice that the local configuration that results after an instantaneous local elastic unloading is not
stress-free, in general (see §3.4). This is in contrast with anelasticity for which a locally unloaded configuration
is stress-free. This is the fundamental difference between viscoelasticity and anelasticity (see Fig. 1).

It should be noted that in the decomposition F =
e

F
v

F there are two possibilities:

i)
v

F(X) : TXB → TXB ,
e

F(X) : TXB → TxC , (2.1a)

ii)
v

F(X) : TXB → TxC ,
e

F(x) : TxC → TxC , (2.1b)

where x = φ(X) . In the next section, we show that the second choice will have physically-inconsistent conse-
quences, and hence, it is not acceptable.

3Denoting the Riemannian volume 3-forms corresponding to the Riemannian metrics g and G by µg and µG , respectively, they
are related as φ∗µg = J µG .

4This is essentially an expression of the incompatibility of the elastic strain in the body.
5The union of all such partially relaxed volume elements constituting the body does not, in general, result in a body embeddable

in the Euclidean ambient space. It can, however, be described as an abstract manifold with a non-trivial metric; and it is, in
general, different from the partially relaxed intermediate state embedded in the Euclidean ambient space discussed in the global
experiment above.
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v

F

X

xt

X

e

F

ϕt

(Ct,g)

stressed local configuration

(a) Viscoelasticity

X

xt

X

e

F

ϕt

(B, G̊)
(Ct,g)

stress-free local configuration

(b) Anelasticity

a

F

(B,G)

Figure 1: Local intermediate configurations in viscoelasticity and anelasticity. Blue and pink squares indicate locally stress-free and
locally stressed configurations, respectively. (a) In viscoelasticity, the local intermediate configuration is stressed, and the material
manifold is the Euclidean manifold (B,G) . (b) In anelasticity, the local intermediate configuration is stress-free, and the material

manifold is (B,G) , where G is the non-flat material metric, which is related to the Euclidean metric G̊ via pull-back.

2.3 Additive decomposition of the free energy into equilibrium and non-equilibrium
parts

We assume that the constitutive model of a nonlinear viscoelastic solid is described by a pair of functionals

(Ψ, ϕ) , where Ψ = Ψ(X,Θ,F,
e

F,G,g) is the free energy density functional (per unit undeformed volume)

and ϕ = ϕ(X,Θ,F,
v

F,
v̇

F,G,g) is a dissipation potential density (per unit undeformed volume)—or Rayleigh
functional, where Θ = Θ(X, t) is the temperature field. In the literature, it has usually been assumed that the
free energy can be additively decomposed into an equilibrium part and a non-equilibrium part: Ψ = ΨEQ+ΨNEQ ,
where the equilibrium free energy depends on the total deformation gradient, and the non-equilibrium free energy

depends on the instantaneous elastic contribution of the deformation gradient
e

F [Reese and Govindjee, 1998a;
Kumar and Lopez-Pamies, 2016]. For either choice in (2.1), one may write ΨEQ = ΨEQ(X,Θ,F,G,g); and

material frame indifference6 implies that ΨEQ(X,F,Θ,G,g) = Ψ̂EQ(X,Θ,C
♭,G) . However, the functional

form of the non-equilibrium free energy depends on the choices in (2.1):

i) ΨNEQ = Ψ
(1)
NEQ(X,Θ,

e

F,G,g) , (2.2a)

ii) ΨNEQ = Ψ
(2)
NEQ(x, θ,

e

F,g) , (2.2b)

where x = φ(X) and θ = Θ ◦ φ−1
t . Considering (2.2a), objectivity implies that Ψ

(1)
NEQ = Ψ̂

(1)
NEQ(X,Θ,

e

C♭,G) ,

where
e

C =
e

FT
e

F .7 For the second choice, material frame indifference forces Ψ
(2)
NEQ to be isotropic. More

specifically, for (2.2b), spatial covariance (an assumption that implies material frame indifference) of the non-

equilibrium free energy Ψ
(2)
NEQ holds if under a spatial diffeomorphism ξ : S → S (such that Tξ is an isometry

in the case of a Euclidean ambient space) one has

Ψ
(2)
NEQ(ξ(x), ξ∗θ, ξ∗

e

F, ξ∗g) = Ψ
(2)
NEQ(x, θ,

e

F,g) , (2.3)

where ξ∗θ = θ ◦ ξ , ξ∗
e

F = Tξ ·
e

F · (Tξ)−1 , and ξ∗g = (Tξ)−1 g (Tξ)−⋆ . This implies that

Ψ
(2)
NEQ(x

′, θ,
e

F,g) = Ψ
(2)
NEQ(x, θ, ξ

∗ e

F, ξ∗g) , (2.4)

6Material frame indifference, objectivity, or invariance under the ambient space rigid body motions of ΨEQ are equivalent in the
case of a Euclidean ambient space to ΨEQ(X,qF,Θ,G,g) = ΨEQ(X,F,Θ,G,g) for all deformation gradients F and any arbitrary

g-orthogonal second-order tensor q : TxS → TxS , i.e., qTq = idS , which is equivalent to writing q∗g = g , where q∗g = q⋆gq .
7Note that

e

C♭ =
e

F∗g =
e

F⋆g
e

F .
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where x′ = ξ(x) , for all such ξ , which hence means that Ψ
(2)
NEQ is an isotropic functional of

e

F.8 It follows that
the non-equilibrium free energy is isotropic for any viscoelastic solid; and consequently, viscoelastic materials
experience creep (deformation increase under constant load) and relaxation (stress decrease under constant
deformation) in an isotropic fashion. However, experimental evidence contradicts this hypothetical situation
since viscoelastic creep and relaxation have experimentally been observed to be anisotropic in different classes
of materials, e.g., skin in vivo [Khatyr et al., 2004], some single-crystal superalloys [Segersäll et al., 2014], and
soft soil [Sivasithamparam et al., 2015]. Therefore, we conclude that the physically consistent decomposition is

indeed (2.1a). From here on, we assume that
v

F(X) : TXB → TXB ,
e

F(X) : TXB → TxC and write

Ψ = Ψ(X,Θ,F,
e

F,G,g) = ΨEQ(X,Θ,F,G,g) + ΨNEQ(X,Θ,
e

F,G,g) , (2.5)

or equivalently

Ψ = Ψ̂(X,Θ,C♭,
e

C♭,G) = Ψ̂EQ(X,Θ,C
♭,G) + Ψ̂NEQ(X,Θ,

e

C♭,G) . (2.6)

Remark 2.1. One may argue that (2.1a) and (2.1b) are not the only possibilities for the direct decomposition

F =
e

F
v

F . In the most general case, one may assume that
v

F : TXB → V , and
e

F : V → TxC , for some arbitrary

vector space V . In such a case, we ought to have ΨNEQ = ΨNEQ(X,Θ,
e

F,m,g) , for some metric m on V as
e

F is
a two-point tensor. This then implies that ΨNEQ is independent of the material configuration B and its metric
G . Hence, unless V is isometric to TXB , it would follow that one may not enforce any material symmetry
constraint on ΨNEQ . This would consequently preclude ΨNEQ —and subsequently the material’s creep and
viscous relaxation behaviors—from reflecting the material symmetry, which is not physical. It follows then that
V has to be isometric to TXB . Therefore, one may assume that V = TXB without any loss of generality.

Remark 2.2. Instead of looking at the deformed body and a local unloading, let us start with the stress-free
undeformed body. Consider a material volume element (a small neighborhood of a material point—undeformed
and stress-free) and imagine that it is locally loaded, i.e., it is isolated and deformed independently from the
rest of the body. This element undergoes an instantaneous elastic deformation followed by a slow viscous
relaxation. It should be noted that both the elastically deformed intermediate state and the final deformed
state are generally stressed. This thought experiment motivates the reverse decomposition of the deformation

gradient: F =
v

F
e

F . It should also be noted that if the reverse decomposition F =
v

F
e

F is used, it may be

proved—similarly to §2.3—that
e

F : TXB → TxC , and
v

F : TxC → TxC . It is observed, in both the direct and
reverse decompositions, that the elastic deformation gradient is a two-point tensor. In the direct decomposition,
the viscous deformation gradient is a material tensor while it is a spatial tensor in the reverse decomposition.
We expect this decomposition to lead to an equivalent theory of viscoelasticity.9 In this paper, we work with
the direct decomposition.

2.4 Dissipation potential for isotropic and anisotropic viscoelastic solids

The dissipation potential complements the free energy functional Ψ to form the full constitutive model of a

viscoelastic solid; it is assumed to have the functional form ϕ = ϕ(X,Θ,F,
v

F,
v̇

F,G,g) and is such that the
generalized force driving the evolution of the viscous deformation is given by

v

B = − ∂ϕ

∂
v̇

F
. (2.7)

Notice that for a general viscoelastic solid, while the dependence of ϕ on F can be reduced to a dependence on the

symmetric tensor C♭ following from material frame indifference, i.e., ϕ = ϕ̂(X,Θ,C♭,
v

F,
v̇

F,G) , the dependence

of ϕ on
v

F and
v̇

F cannot always be reduced to a dependence on the symmetric tensors
v

C♭ and
v̇

C♭ . This implies
that the model used by Le Tallec et al. [1993] is applicable to only a subset of viscoelastic solids. It is assumed

8Note that material symmetries put constraints on Ψ
(1)
NEQ but not on Ψ

(2)
NEQ .

9It has been shown that the direct and inverse decompositions are equivalent for anelasticity [Yavari and Sozio, 2023], and we
expect a similar result for viscoelasticity.

7



that ϕ is a convex functional of
v̇

F [Ziegler, 1958; Ziegler and Wehrli, 1987; Germain et al., 1983; Goldstein et al.,
2002; Kumar and Lopez-Pamies, 2016], which is equivalent to(

∂ϕ

∂
v̇

F2

− ∂ϕ

∂
v̇

F1

)
:
(

v̇

F2 −
v̇

F1

)
≥ 0 , (2.8)

for any
v̇

F1 and
v̇

F2 .

3 Balance Laws

3.1 Conservation of mass

We denote the material and spatial mass densities by ρo(X) and ρ(x, t) , respectively. The conservation of mass
in local form reads ρJ = ρo , which yields the continuity equation

dρ

dt
+ ρ divv = 0 ,

where div = divg denotes the spatial Levi-Civita divergence operator corresponding to the metric g .

3.2 The Lagrange-d’Alembert principle

The configuration of a viscoelastic body is given by a pair (φ,
v

F) , and we denote the configuration space
containing all such pairs by C . The governing equations of the viscoelastic body can be derived as the Euler-
Lagrange equations associated with a variational principle defined as follows: Let us fix a time interval [t0, t1] ,
and look at paths c : [t0, t1] → C in the configuration space such that c(t0) and c(t1) are fixed. We define an
action functional S on the space of paths as

S(c) =

∫ t1

t0

∫
B

L dV dt , (3.1)

where L is the Lagrangian density per unit undeformed volume, defined as L = T −Ψ , where T = 1
2ρo∥V∥2g

is the kinetic energy density per unit undeformed volume. One may hence choose the following functional
dependence10

L = L̂ (X,Θ,V,C♭,
e

C♭,G,g) =
1

2
ρo∥V∥2g−Ψ̂(X,Θ,C♭,

e

C♭,G) . (3.2)

Variations of the generalized configurations (φ,
v

F) are represented by a one-parameter family (φt,ϵ,
v

Ft,ϵ) of

motions φt,ϵ and viscous deformation gradients
v

Ft,ϵ such that

(φt,0,
v

Ft,0) = (φt,
v

Ft) , ∀t ∈ [t0, t1] , (3.3a)

(φt0,ϵ,
v

Ft0,ϵ) = (φt0 ,
v

Ft0) , ∀ϵ > 0 , (3.3b)

(φt1,ϵ,
v

Ft1,ϵ) = (φt1 ,
v

Ft1) , ∀ϵ > 0 . (3.3c)

Notice that δφ = dφt,ϵ(X)/dϵ|ϵ=0 is a vector in the ambient space, whereas δ
v

F = d
v

Ft,ϵ(X)/dϵ|ϵ=0 is a material
tensor, i.e., a tensor in the material manifold. The Lagrange–d’Alembert variational principle states that the
physical configuration of the body satisfies the following identity [Marsden and Ratiu, 2013]11

δ

∫ t1

t0

∫
B

L dV dt+

∫ t1

t0

∫
B

v

B :δ
v

F dV dt+

∫ t1

t0

∫
B
ρo⟨⟨B, δφ⟩⟩g dV dt+

∫ t1

t0

∫
∂B

⟨⟨T, δφ⟩⟩g dAdt = 0 , (3.4)

10One instead may equivalently choose the functional dependence L = L̂ (X,Θ,V,F,
e

F,G,g) .
11In this work, we assume that the temperature field remains unaltered by perturbations of the deformation mapping, i.e., δΘ = 0 .

Otherwise, in the case of thermoelasticity, we ought to consider variations of the temperature field—see Sadik and Yavari [2017b].
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for all variation fields δφ and δ
v

F . The vector fields B = B(X, t) and T = T(X, t) are the body force per unit
mass and the boundary traction fields per unit undeformed area, respectively. It follows from the Lagrange–
d’Alembert variational principle (3.4) that∫ t1

t0

∫
B

Ç
∂L̂

∂V
δV +

∂L̂

∂C♭
:δC♭ +

∂L̂

∂
e

C♭
:δ

e

C♭ +
∂L̂

∂G
:δG+

∂L̂

∂g
:δg

å
dV dt

+

∫ t1

t0

∫
B

v

B :δ
v

F dV dt+

∫ t1

t0

∫
B
ρo⟨⟨B, δφ⟩⟩g dV dt+

∫ t1

t0

∫
∂B

⟨⟨T, δφ⟩⟩g dAdt = 0 .

(3.5)

Using (2.7), (A.3), (A.5), and (A.9)-(A.11) as detailed in Appendix A, the above identity is simplified to read∫ t1

t0

∫
B

ñ
⟨⟨−ρoA+Div

Ç
2F

∂Ψ̂

∂C♭
+ 2

e

F
∂Ψ̂

∂
e

C♭

å
+ ρoB, δφ⟩⟩g +

Ç
2

e

C♭ ∂Ψ̂

∂
e

C♭

v

F−⋆ − ∂ϕ

∂
v̇

F

å
: δ

v

F

ô
dV dt

−
∫ t1

t0

∫
∂B

⟨⟨
Ç
2F

∂Ψ̂

∂C♭
+ 2

e

F
∂Ψ̂

∂
e

C♭

å
N− T, δφ⟩⟩g dAdt = 0 ,

(3.6)

where N is the G-unit normal to ∂B . Since (3.6) above is valid for all variations δφ and δ
v

F , one finds the
balance of linear momentum together with its boundary conditions12

Div

ñ
2F

∂Ψ̂

∂C♭
+ 2

e

F
∂Ψ̂

∂
e

C♭

ô
+ ρoB = ρoA , (3.7a)ñ

2F
∂Ψ̂

∂C♭
+ 2

e

F
∂Ψ̂

∂
e

C♭

ô∣∣∣∣∣
∂B

N = T , (3.7b)

where Div denotes the two-point Levi-Civita divergence operator.13 One also finds the kinetic equation governing

the evolution of the internal variable
v

F:

∂ϕ

∂
v̇

F
− 2

e

C♭ ∂Ψ̂

∂
e

C♭

v

F−⋆ = 0 . (3.8)

The initial condition for the kinetic equation is in physical components
v̂

F(X, 0) = I . For the deformation map,
φ(X, 0) = ιB(X) , and ∂φ(X, 0)/∂t = V0 , where ιB is the inclusion map and V0 is the initial velocity field of
the viscoelastic body.

Incompressible viscoelastic solids. For an incompressible viscoelastic solid, one assumes both the total
deformation and its purely viscous part to be volume preserving [Leonov, 1976; Le Tallec et al., 1993], i.e.,

J = detF

…
detg

detG
= 1 ,

v

J = det
v

F = 1 . (3.9)

The free energy is hence augmented by the above constraints and their corresponding Lagrange multipliers, i.e.,

the free energy for the incompressible solid is modified to read Ψinc = Ψ−p(J−1)−q(
v

J−1) , where p = p(X, t)
and q = q(X, t) are the Lagrange multipliers corresponding to the constraints given in (3.9). Therefore, the

Lagrangian (3.2) is modified to read Linc = L + p(J − 1) + q(
v

J − 1) . Now, the Lagrange-d’Alembert principle
reads ∫ t1

t0

∫
B

Ä
δL + p δJ |

J=1
+q δ

v

J | v
J=1

+
v

B :δ
v

F+ ρo⟨⟨B, δφ⟩⟩g
ä
dV dt+

∫ t1

t0

∫
∂B

⟨⟨T, δφ⟩⟩g dAdt = 0 . (3.10)

12The balance of angular momentum will later be discussed in §3.3.3.
13For a two-point tensor with components QaA , DivQ has components, QaA

|A = QaA
,A + ΓA

AB QaB + γa
bcF

b
A QcA .
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Consequently, by using (2.7), (A.3), (A.5), (A.9)-(A.11), (A.13), and (A.15) as detailed in Appendix A, (3.10)
yields

Div

Ç
2F

∂Ψ̂

∂C♭
+ 2

e

F
∂Ψ̂

∂
e

C♭
− pg♯F−⋆

å
+ ρoB = ρoA , (3.11a)Ç

2F
∂Ψ̂

∂C♭
+ 2

e

F
∂Ψ̂

∂
e

C♭
− pg♯F−⋆

å∣∣∣∣∣
∂B

N = T , (3.11b)

and
∂ϕ

∂
v̇

F
− 2

e

C♭ ∂Ψ̂

∂
e

C♭

v

F−⋆ = q
v

F−⋆ . (3.12)

Remark 3.1. Note that if one considers the equivalent functional dependence for Ψ in terms of
v

F , i.e.,

Ψ = Ψ̌(X,F,
v

F,G,g) = Ψ(X,F,F
v

F−1,G,g) , it may be seen that

2
e

C♭ ∂Ψ̂

∂
e

C♭

v

F−⋆ = −∂Ψ̌
∂

v

F
. (3.13)

This consequently transforms the kinetic equations (3.8) and (3.12), respectively, to

∂ϕ

∂
v̇

F
+
∂Ψ̌

∂
v

F
= 0 for compressible viscoelastic solids, (3.14a)

∂ϕ

∂
v̇

F
+
∂Ψ̌

∂
v

F
= q

v

F−⋆ for incompressible viscoelastic solids. (3.14b)

Eq. (3.14a) is identical to Eq. (7-b) as it appears in [Kumar and Lopez-Pamies, 2016] and Eq. (3.14b) is
equivalent to Eq. (3.10) as it appears in [Le Tallec et al., 1993].

3.3 Thermodynamics of viscoelasticity

3.3.1 The first law of thermodynamics

The first law of thermodynamics postulates the existence of a state functional, namely the internal energy, which
satisfies the following balance of energy [Truesdell, 1952; Gurtin, 1974; Marsden and Hughes, 1983; Yavari et al.,
2006]

d

dt

∫
U

Å
E +

1

2
ρo∥V∥2g

ã
dV =

∫
U
ρo
Ä
⟨⟨B,V⟩⟩g +R

ä
dV +

∫
∂U

Ä
⟨⟨T,V⟩⟩g +H

ä
dA , (3.15)

where E = Ê(X,N ,C♭,
e

C♭,G) is the material internal energy density (per unit undeformed volume), R = R(X, t)
is the heat supply per unit mass, and H is the heat flux across a material surface; which may be written as
H = −⟨⟨Q,N⟩⟩G , where Q = Q(X,Θ, dΘ,C♭,G) is the external heat flux per unit material area, N is the
G-unit normal to the boundary ∂B , and Θ = Θ(X, t) is the temperature field. In local form, the energy balance
(3.15) reads14

Ė = S :D−DivQ+ ρoR+ ⟨⟨DivP+ ρo(B−A),V⟩⟩g , (3.16)

where a dotted quantity denotes its total time derivative, P is the first Piola-Kirchhoff stress tensor—T = PN ,
S = F−1P is the second Piola-Kirchhoff stress tensor, and D = 1

2Ċ
♭ is the material rate of deformation tensor.

14Note that the localization of the energy balance (3.15) is typically presented without the last term appearing in (3.16) that
vanishes after imposing the balance of linear momentum. At this point in this work, even though we have already proven the balance
of linear momentum (3.11) in terms of the tensorial derivatives of the free energy, we have not yet proven the Doyle-Ericksen formula
(the stress constitutive equation) relating them to the stress tensors, and may hence not yet impose that the last term in (3.16)
vanishes.
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3.3.2 The second law of thermodynamics

The second law of thermodynamics postulates the existence of a state functional, namely the entropy, which
satisfies the material Clausius-Duhem inequality [Truesdell, 1952; Gurtin, 1974; Marsden and Hughes, 1983]

d

dt

∫
U
NdV ≥

∫
U
ρo
R

Θ
dV +

∫
∂U

H

Θ
dA , (3.17)

where N = N̂ (X,Θ,C♭,
e

C♭,G) is the material entropy density (per unit undeformed volume). In localized
form, the material Clausius-Duhem inequality (3.17) reads

η̇ = ṄΘ+ΘDiv

Å
Q

Θ

ã
− ρoR ≥ 0 , (3.18)

where η̇ is the rate of energy dissipation.

3.3.3 Constitutive relations and balance laws

The free energy density Ψ is the Legendre transform of the internal energy density E with respect to the
conjugate variables of temperature Θ and N , i.e.,

Ψ = E −ΘN , (3.19)

where E = Ê(X,N ,C♭,
e

C♭,G) , N = N̂ (X,Θ,C♭,
e

C♭,G) , and Ψ = Ψ̂(X,Θ,C♭,
e

C♭,G) . It hence follows from
(3.18) that

η̇ = Ė − Ψ̇− Θ̇N +DivQ− 1

Θ
⟨dΘ,Q⟩ − ρoR ≥ 0 . (3.20)

Using (3.16) in (3.20) and expanding Ψ̇ , one finds

η̇ =
1

2
S :Ċ♭ − ∂Ψ̂

∂Θ
Θ̇− ∂Ψ̂

∂C♭
:Ċ♭ − ∂Ψ̂

∂
e

C♭
:

ė

C♭ − Θ̇N − 1

Θ
⟨dΘ,Q⟩+ ⟨⟨DivP+ ρo(B−A),V⟩⟩g ≥ 0 . (3.21)

It can be seen that15

∂Ψ̂

∂
e

C♭
:

ė

C♭ =
v

F−1 ∂Ψ̂

∂
e

C♭

v

F−⋆ :Ċ♭ − 2
e

C♭ ∂Ψ̂

∂
e

C♭

v

F−⋆ :
v̇

F ,

and it follows that (3.21) is simplified to read

η̇ =

Ç
N +

∂Ψ̂

∂Θ

å
Θ̇ +

1

2

Ç
S− 2

∂Ψ̂

∂C♭
− 2

v

F−1 ∂Ψ̂

∂
e

C♭

v

F−⋆
å
:Ċ♭

+ ⟨⟨DivP+ ρo(B−A),V⟩⟩g + 2
e

C♭ ∂Ψ̂

∂
e

C♭

v

F−⋆ :
v̇

F− 1

Θ
⟨dΘ,Q⟩ ≥ 0 .

(3.22)

The inequality (3.22) above must hold for all deformations φ and temperature fields Θ . Hence, it follows that16

N = −∂Ψ̂
∂Θ

, (3.23a)

S = 2
dΨ̂

dC♭
= 2

∂Ψ̂EQ

∂C♭
+ 2

v

F−1 ∂Ψ̂NEQ

∂
e

C♭

v

F−⋆ . (3.23b)

15Note that
ė

C♭ =
v

F−⋆Ċ♭
v

F−1 −
e

C♭
v̇

F
v

F−1 −
v

F−⋆
v̇

F
e

C♭ , which follows from
e

C♭ =
v

F∗C♭ =
v

F−⋆C♭
v

F−1 .

16Following (3.8), one has 2
e

C♭(∂Ψ̂NEQ/∂
e

C♭)
v

F−⋆ = ∂ϕ(X,F,
v

F,
v̇

F,G,g)/∂
v̇

F ; and recall that Q = Q(X,Θ, dΘ,C,G) . Therefore,

the coefficients of
v̇

F and dΘ in the inequality (3.22) depend on
v̇

F and dΘ , respectively; hence, they may not be identically

equal to zero in spite of the arbitrariness of
v̇

F and dΘ . Also, recall from (2.6) that Ψ̂(X,Θ,C♭,
e

C♭,G) = Ψ̂EQ(X,Θ,C♭,G) +

Ψ̂NEQ(X,Θ,
e

C♭,G) .
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The first Piola-Kirchhoff P , the Cauchy σ , and the convected stress Σ tensors17 may hence be written as

P = g♯
dΨ

dF
= g♯

∂ΨEQ

∂F
+ g♯

∂ΨNEQ

∂
e

F

v

F−⋆ , (3.24a)

σ =
2

J

dΨ

dg
=

2

J

∂ΨEQ

∂g
+

2

J

∂ΨNEQ

∂g
, (3.24b)

Σ =
2

J

dΨ̂

dC♭
=

2

J

∂Ψ̂EQ

∂C♭
+

2

J

v

F−1 ∂Ψ̂NEQ

∂
e

C♭

v

F−⋆ . (3.24c)

Substituting the stress constitutive equation (3.24a) for P into (3.7) yields the balance of linear momentum in
the two-point tensorial form and the traction boundary condition:

DivP+ ρoB = ρoA , (3.25a)

P|∂B N = T . (3.25b)

From (3.23b) and since C⋆ = C , one finds the balance of angular momentum in two-point tensorial form

P⋆F−⋆ = F−1P . (3.26)

In spatial form, the balance of linear and angular momenta and the traction boundary condition read

divσ + ρb = ρa , (3.27a)

σ⋆ = σ , (3.27b)

σ|∂B n = t , (3.27c)

where b = B ◦ φ−1
t , t = JT ◦ φ−1

t , and n = N ◦ φ−1
t . In convected form, the balance of linear and angular

momenta and the traction boundary condition read

DivC♭ Σ+ φ∗
t (ρb) = φ∗

t (ρa) , (3.28a)

Σ⋆ = Σ , (3.28b)

Σ|∂B N = φ∗
t t , (3.28c)

where DivC♭ denotes the convected Levi-Civita divergence operator, i.e., the divergence operator associated
with the Levi-Civita connection of the convected manifold (B,C♭) .

Within the scope of this work, we assume that the viscoelastic body undergoes an isothermal process, i.e.,
dΘ = 0 ; hence, using (3.23) and (3.25), the Clausius-Duhem inequality (3.22) reduces to read

η̇ = 2
e

C♭ ∂Ψ̂NEQ

∂
e

C♭

v

F−⋆ :
v̇

F ≥ 0 . (3.29)

Incompressible viscoelastic solids For an incompressible viscoelastic solid, the Legendre transform (3.19)
is modified to take into account the volume preserving constraints (3.9) as follows

Ψ− p(J − 1)− q(
v

J − 1) = E −ΘN . (3.30)

Similarily to (A.12) and (A.14), one finds

J̇ =
1

2
JC−♯ :Ċ♭ and

v̇

J =
v

J
v

F−⋆ :
v̇

F . (3.31)

17Recall that S = F−1P = JΣ = JF−1σF−⋆ .
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One hence simplifies the constitutive relations (3.23) and (3.24) to read

N = −∂Ψ̂
∂Θ

, (3.32a)

S = 2
dΨ̂

dC♭
− pC−♯ = 2

∂Ψ̂EQ

∂C♭
+ 2

v

F−1 ∂Ψ̂NEQ

∂
e

C♭

v

F−⋆ − pC−♯ , (3.32b)

P = g♯
dΨ

dF
− pg♯F−⋆ = g♯

∂ΨEQ

∂F
+ g♯

∂ΨNEQ

∂
e

F

v

F−⋆ − pg♯F−⋆ , (3.32c)

σ = 2
dΨ

dg
− pg♯ = 2

∂ΨEQ

∂g
+ 2

∂ΨNEQ

∂g
− pg♯ , (3.32d)

Σ = 2
dΨ̂

dC♭
− pC−♯ = 2

∂Ψ̂EQ

∂C♭
+ 2

v

F−1 ∂Ψ̂NEQ

∂
e

C♭

v

F−⋆ − pC−♯ . (3.32e)

The Clausius-Duhem inequality (3.29) is rewritten as

η̇ = 2
e

C♭ ∂Ψ̂NEQ

∂
e

C♭

v

F−⋆ :
v̇

F+ q
v

F−⋆ ≥ 0 . (3.33)

Remark 3.2. From the convexity of the dissipation potential ϕ as defined in (2.8), if one assumes that for fixed
v

F , ϕ is minimized for
v̇

F = 0 , it follows that
∂ϕ

∂
v̇

F
:

v̇

F ≥ 0 , (3.34)

which is consistent with the Clausius-Duhem inequality stating that the rate of energy dissipation is non-
negative, i.e., η̇ ≥ 0 .18

From here on, consistent with the isothermal process assumption, we may drop the temperature depen-

dance in both the free energy and the dissipation potential, i.e., Ψ = Ψ(X,F,
e

F,G,g) = Ψ̂(X,C♭,
e

C♭,G) and

ϕ = ϕ(X,F,
v

F,
v̇

F,G,g) = ϕ̂(X,C♭,
v

F,
v̇

F,G) .

3.4 Stress in the intermediate configurations in anelasticity versus viscoelasticity

Anelasticity. In anelasticity, the energy density has the form W = W̊ (X,
e

F,G,g) . The first Piola-Kirchhoff
stress is calculated as

P = g♯
∂W

∂F
= g♯

∂W̊

∂
e

F

∂
e

F

∂F
= g♯

∂W̊

∂
e

F

a

F−⋆ . (3.35)

In components P aA = gab ∂W̊/
e

FbM (
a

F−1)AM . Stress in the intermediate configuration is calculated as

Pint = g♯
∂W̊

∂
e

F

∣∣∣∣∣ e
F=id

a

F−⋆ = 0 , (3.36)

as ∂W̊/∂
e

F vanishes in the absence of a local elastic deformation.

Viscoelasticity. In viscoelasticity, recall that the free energy density is written as Ψ(X,F,
e

F,G,g) = ΨEQ(X,F,G,g)+

ΨNEQ(X,
e

F,G,g) , and hence stress is calculated as

P = g♯
dΨ

dF
= g♯

∂ΨEQ

∂F
+ g♯

∂ΨNEQ

∂
e

F

v

F−⋆ . (3.37)

Stress in the intermediate configuration is then calculated as

Pint = g♯
dΨ

dF

∣∣∣∣∣ e
F=id

= g♯
∂ΨEQ

∂F

∣∣∣∣∣
F=

v
F

+ g♯
∂ΨNEQ

∂
e

F

∣∣∣∣∣ e
F=id

v

F−⋆ = g♯
∂ΨEQ

∂F

∣∣∣∣∣
F=

v
F

, (3.38)

18As a matter of fact, (3.34) may be alternatively found following (3.8) and (3.29)—or (3.12) and (3.33) for the incompressible
case.
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Figure 2: Standard solid: ΨEQ , ΨNEQ , and ϕ are the nonlinear analogues of EEQ , ENEQ , and η , respectively.

as ∂ΨNEQ/∂
e

F vanishes when there is no local elastic deformation. This clearly shows that in viscoelasticity the
local intermediate configuration is, in general, not stress free (see Fig. 1).

Remark 3.3. If a small neighborhood of a material point in the current configuration is unloaded, the in-

stantaneous unloaded length is calculated using the metric
e

F∗G . However, this is not the natural length; the
natural length is found in the reference configuration and is measured by G . In the intermediate configuration,

the natural length is calculated using the metric
v

F∗G . As the intermediate configuration is not stress-free, the

metric
v

F∗G is not of much physical significance and does not appear anywhere in the present theory. However,
there is another metric that is of physical significance for the non-equilibrium free energy, see §4.2.1.

Remark 3.4. Let us consider a viscoelastic body that undergoes a motion in the time interval [0,∞) . At
time t = T , the applied loads (and/or boundary displacements) are held fixed. Thus, for t > T , F(X, t) =
F(X,T ) =: F̄(X) . However, note that the elastic and viscous deformation gradients are still time dependent,
i.e.,

F̄(X) =
e

F(X, t)
v

F(X, t) , t > T . (3.39)

In terms of the physical components ̂̄F(X) =
ê

F(X, t)
v̂

F(X, t) , where ̂̄F aA =
√
gaaGAA F

a
A ,

ê

F
a

A =
√
gaaGAA

e

FaA ,

and
v̂

F
A

B =
v

FAB (no summation on repeated indices) [Truesdell, 1953]. We are interested in the evolution of
e

F

and
v

F when t → ∞ . Recall that Ψ(X,F,
e

F,G,g) = ΨEQ(X,F,G,g) + ΨNEQ(X,
e

F,G,g) , and that stress has
ƒconsequently the following additive decomposition

P = PEQ +PNEQ , PEQ = g♯
∂ΨEQ

∂F
, PNEQ = g♯

∂ΨNEQ

∂
e

F

v

F−⋆ . (3.40)

For t→ ∞ , P = PEQ , i.e., PNEQ = 0 . This implies that

lim
t→∞

∂ΨNEQ

∂
e

F
= 0 . (3.41)

Therefore, limt→∞
ê

F(X, t) = I , and hence limt→∞
v

F(X, t) = ̂̄F(X) . This is the nonlinear analogue of what
is observed in a stress-relaxation experiment for the standard solid model [Zener, 1948] that is briefly revised
next (see [Simo and Hughes, 2006]), see Fig. 2. The non-equilibrium stress has the following relation with the
viscous strain: PNEQ(t) = η ϵ̇v(t) . From equilibrium, PNEQ(t) = ENEQ ϵe(t) = ENEQ (ϵ(t)− ϵv(t)) . Thus, from
these two equations, one obtains

ϵ̇v(t) +
1

η
ϵv(t) =

1

η
ϵ(t) , τ =

η

ENEQ
. (3.42)

Also, note that P (t) = PEQ(t) + PNEQ(t) = EEQ ϵ(t) + ENEQ (ϵ(t)− ϵv(t)) = Eϵ(t) − ENEQ ϵv(t) , where
E = EEQ + ENEQ . Now, suppose that the total strain is fixed, i.e., ϵ(t) = ϵ0 and ϵv(0) = 0 . Hence, ϵv(t) =

ϵ0
î
1− e−

t
τ

ó
and ϵe(t) = ϵ0 e

− t
τ . It is observed that limt→∞ ϵe(t) = 0 and limt→∞ ϵv(t) = ϵ0 .
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4 Material Symmetry

In this section, we discuss material symmetry in both anelasticity and viscoelasticity.

4.1 Material symmetry in nonlinear anelasticity

For an elastic solid, let us assume an energy functional of the form W̊ = W̊ (X,F, G̊,g) , where g is the metric

of the Euclidean ambient space and G̊ is the induced metric on the body, which is the material metric in the
absence of eigenstrains. The material symmetry group G̊X at a point X with respect to the Euclidean reference
configuration (B, G̊) is defined as19

K̊∗W̊ (X,F, G̊, g̊) = W̊ (X, K̊∗F, K̊∗G̊, g̊) = W̊ (X,F, G̊, g̊) , ∀ K̊ ∈ G̊X ⩽ Orth(G̊) , (4.1)

for all deformation gradients F , where Orth(G̊) = {Q : TXB → TXB | Q⋆G̊Q = G̊} . Note that K̊∗F = FK̊

and K̊∗G̊ = K̊⋆G̊K̊ = G̊ . Thus

W̊ (X,FK̊, G̊, g̊) = W̊ (X,F, G̊, g̊) , ∀ K̊ ∈ G̊X ⩽ Orth(G̊) . (4.2)

For an anelastic body, F =
e

F
a

F , where
e

F and
a

F are the local elastic and anelastic deformations, respectively.

Energy explicitly depends on the local elastic deformation, i.e., W = W̊ (X,
e

F, G̊,g) . Yavari and Sozio [2023]
defined the following energy functional20

W (X,F,
a

F, G̊,g) =W (X,
e

F
a

F,
a

F, G̊,g) = W̊ (X,F
a

F−1, G̊,g) = W̊ (X,
e

F, G̊,g) . (4.3)

The following is Eq. (3.20) in [Yavari and Sozio, 2023]:

W (X,
e

F
a

F,
a

F, G̊, g̊) = W̊ (X,
e

F, G̊, g̊)

= W̊ (X,
e

FK̊, G̊, g̊)

=W (X,
e

FK̊
a

F,
a

F, G̊, g̊)

=W (X,F
a

F−1K̊
a

F,
a

F, G̊, g̊)

=W (X,FK,
a

F, G̊, g̊) , ∀ K̊ ∈ G̊X .

(4.4)

The first equality is the definition of W and the second equality is a consequence of material symmetry (4.2).

The third equality is incorrect; instead of
a

F , K̊∗ a

F = K̊−1
a

FK̊ should be used in the second and the third
dependent variable entries (see Fig. 3b). Thus, their Eq. (3.20) should be corrected to read

W (X,
e

F
a

F,
a

F, G̊, g̊) = W̊ (X,
e

F, G̊, g̊)

= W̊ (X,
e

FK̊, G̊, g̊)

=W (X,
e

FK̊K̊−1
a

FK̊, K̊−1
a

FK̊, G̊, g̊)

=W (X,FK̊, K̊−1
a

FK̊, G̊, g̊) , ∀ K̊ ∈ G̊X .

(4.5)

Yavari and Sozio [2023] suggested a connection between (4.4) and Noll’s rule; but it turns out that the corrected
Eq. (4.5) bears no such connection. Noll’s rule states that under a material diffeomorphism, the symmetry group
of an elastic body transforms naturally, i.e., through push forward. More specifically, consider a transformation
F(X) : TXB → TXB . Let us denote the material symmetry group of the elastic solid with respect to (TXB, G̊)

by G̊X , and that with respect to (TXB,F∗G̊) by GX . Noll’s rule says that GX = F∗G̊X = F G̊XF−1 . However,
notice that (4.5) has nothing to do with Noll’s rule. It simply tells us how symmetry group acts on deformation
gradient and the anelastic local deformation. It should be noted that Eqs. (3.21)-(3.23) in [Yavari and Sozio,
2023] are incorrect as well. However, what follows after their Eq. (3.23) is correct. This mistake did not affect
any of the conclusions in section §3.5 of [Yavari and Sozio, 2023].

19G̊X ⩽ Orth(G̊) indicates that G̊X is a subgroup of Orth(G̊) .
20In [Yavari and Sozio, 2023], g̊ was used for the metric of the Euclidean ambient space and g was reserved for the metric of the

spatial intermediate configuration.
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Figure 3: The actions of the symmetry group on the total, elastic, and anelastic deformation gradients. The blue and pink squares
indicate locally stress-free and locally stressed configurations, respectively.

4.2 Material symmetry in nonlinear viscoelasticity

The material symmetry group GX of a viscoelastic solid with the equilibrium free energy functional ΨEQ =

ΨEQ(X,F,G,g) , the non-equilibrium free energy ΨNEQ = ΨNEQ(X,
e

F,G,g) , and the dissipation potential

ϕ = ϕ(X,F,
v

F,
v̇

F,G,g) at a point X with respect to the Euclidean reference configuration (B,G) is defined as21
K∗ΨEQ(X,F,G,g) = ΨEQ(X,FK,G,g) = ΨEQ(X,F,G,g) ,

K∗ΨNEQ(X,
e

F,G,g) = ΨNEQ(X,
e

FK,G,g) = ΨNEQ(X,
e

F,G,g) ,

K∗ϕ(X,F,
v

F,
v̇

F,G,g) = ϕ(X,FK,K∗ v

F,K∗ v̇

F,G,g) = ϕ(X,F,
v

F,
v̇

F,G,g) ,

∀ K ∈ GX ⩽ Orth(G) , (4.6)

for all deformation gradients F and viscous deformation gradients
v

F , where K∗ v

F = K−1
v

FK (see Fig. 3a) and
Orth(G) = {Q : TXB → TXB | Q⋆GQ = G} .

4.2.1 Structural tensors, viscous metric, and viscous structural tensors

The µth power Kronecker product ⟨Q⟩µ of a G-orthogonal transformation Q for a µth order tensor Λ is defined

as (⟨Q⟩µΛ)Ā1...Āµ = QĀ1
A1 . . .Q

Āµ
Aµ ΛA1...Aµ . In particular, ⟨Q⟩m (W1 ⊗ . . .⊗Wm) = QW1 ⊗ . . .⊗QWm ,

where Wi ∈ TXB , i = 1, . . . ,m . A symmetry group G ⩽ Orth(G) may be characterized via a finite collection
of structural tensors Λi of order µi , i = 1, . . . , N as follows [Liu, 1982; Boehler, 1987; Zheng and Spencer, 1993;
Zheng, 1994; Lu and Papadopoulos, 2000; Mazzucato and Rachele, 2006]

Q ∈ G ⩽ Orth(G) ⇐⇒ ⟨Q⟩µi
Λi = Λi ,∀i = 1, . . . , N . (4.7)

In other words, the set of structural tensors is a basis for the space of G-invariant tensors. We denote the
collection of structural tensors by Λ . When Λ is added to the arguments of the (free or dissipation) en-
ergy functional, the energy functional becomes an isotropic functional of its arguments—the so-called principle
of isotropy of space [Boehler, 1979]. Now, the energy functional being isotropic, the corresponding set of
isotropic invariants can be used to simplify its dependence on its arguments. A theorem proved by Hilbert in
1890 [Hilbert, 1993] (see also [Olive et al., 2017]) tells us that any finite collection of tensors has a finite set
of isotropic invariants—the integrity basis for the set of isotropic invariants of the collection [Spencer, 1971].
Therefore, since the free energy functionals ΨEQ and ΨNEQ are isotropic functionals of symmetric tensors,

i.e., ΨEQ = Ψ̂EQ(X,Θ,C
♭,Λ1, . . . ,ΛN ,G) , and ΨNEQ = Ψ̂NEQ(X,Θ,

e

C♭,Λ1, . . . ,ΛN ,G) , one writes ΨEQ =
Ψ(X, I1, . . . , Im) , where {I1, . . . , Im} is the integrity basis for the set of isotropic invariants of

{
C♭,Λ1, . . . ,ΛN

}
;

and ΨNEQ = Ψ̃(X,
e

I1, . . . ,
e

Im) , where
{

e

I1, . . . ,
e

Im

}
is the integrity basis for the set of isotropic invariants of

21GX ⩽ Orth(G) indicates that GX is a subgroup of Orth(G) .
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{
e

C♭,Λ1, . . . ,ΛN

}
. However, the dissipation potential ϕ = ϕ̂(X,Θ,C♭,Λ1, . . . ,ΛN ,

v

F,
v̇

F,G) is an isotropic

functional of the symmetric tensors
{
C♭,Λ1, . . . ,ΛN

}
and two generally non-symmetric material tensors

v

F and
v̇

F ; hence, the classical representation theorems cannot be used.

Next, we show that the dependence of the non-equilibrium free energy on
e

F can be reduced to a dependence

on the total deformation gradient F . From (2.5), recall that ΨNEQ = ΨNEQ(X,Θ,
e

F,G,g) . For an anisotropic
solid we have a collection of structural tensors denoted by Λ . Let us add this collection to the list of arguments
of the non-equilibrium free energy and write

ΨNEQ = ΨNEQ(X,Θ,
e

F,G,Λ,g) . (4.8)

Now, ΨNEQ is a materially-covariant functional [Lu, 2012; Yavari and Sozio, 2023], i.e., for any invertible linear
transformation T : TXB → TXB , one has

ΨNEQ(X,Θ,T
∗ e

F,T∗G,T∗Λ,g) = ΨNEQ(X,Θ,
e

F,G,Λ,g) . (4.9)

Noting that
e

F =
v

F∗F , and choosing T =
v

F , material covariance implies that

ΨNEQ(X,Θ,
e

F,G,Λ,g) = ΨNEQ(X,Θ,
v

F∗ v

F∗F,
v

F∗G,
v

F∗Λ,g) = ΨNEQ(X,Θ,F,
v

G,
v

Λ,g) , (4.10)

where
v

G =
v

F∗G , and
v

Λ =
v

F∗Λ . Thus, in summary, we have

Ψ = Ψ(X,Θ,F,
e

F,G,Λ,g) = ΨEQ(X,Θ,F,G,Λ,g) + ΨNEQ(X,Θ,F,
v

G,
v

Λ,g) . (4.11)

This means that the non-equilibrium free energy is a function of the total deformation gradient as long as the

viscous metric
v

G and viscous structural tensors
v

Λ are used. Objectivity implies that22

Ψ = Ψ̂EQ(X,Θ,C
♭,G,Λ) + Ψ̂NEQ(X,Θ,C

♭,
v

G,
v

Λ) . (4.13)

Next, we use the integrity basis for isotropic, transversely isotropic, orthotropic, and monoclinic viscoelastic
solids, and explicitly write their respective stress constitutive relations and kinetic equations.

4.2.2 Isotropic solids

Stress constitutive equations. For isotropic solids, ΨEQ and ΨNEQ depend only on the principal invariants

of C♭ , and
e

C♭ , respectively, i.e.,

ΨEQ = Ψ(X, I1, I2, I3) , ΨNEQ = Ψ̃(X,
e

I1,
e

I2,
e

I3) , (4.14)

where23

I1 = trC = CAA , I2 =
1

2

(
I21 − trC2

)
=

1

2

(
I21 − CAB CBA

)
, I3 = detC ,

e

I1 = tr
e

C =
e

CAA ,
e

I2 =
1

2

Ä e

I21 − tr
e

C2
ä
=

1

2

Ä e

I21 −
e

CAB
e

CBA
ä
,

e

I3 = det
e

C .

(4.16)

Note that C♭ =
v

F∗ e

C♭ =
v

F⋆
e

C♭
v

F , or equivalently
e

C♭ =
v

F−⋆C♭
v

F−1 . The second Piola-Kirchhoff stress is written
as

S = 2
dΨ̂

dC♭
= 2

dΨ̂EQ

dC♭
+ 2

dΨ̂NEQ

dC♭
= 2

∂Ψ̂EQ

∂C♭
+ 2

∂Ψ̂NEQ

∂
e

C♭
· ∂

e

C♭

∂C♭
= 2

∂Ψ̂EQ

∂C♭
+ 2

v

F−1 ∂Ψ̂NEQ

∂
e

C♭

v

F−⋆ . (4.17)

22This is consistent with (2.6) when structural tensors are included. First, note that
e

C =
v

F∗C♭ . Thus

Ψ̂NEQ = Ψ̂NEQ(X,Θ,
e

C♭,G,Λ) = Ψ̂NEQ(X,Θ,
v

F∗C
♭,G,Λ) = Ψ̂NEQ(X,Θ,C♭,

v

F∗G,
v

F∗Λ) = Ψ̂NEQ(X,Θ,C♭,
v

G,
v

Λ) . (4.12)

23The characteristic polynomial of C reads:

λ3 − I1 λ
2 + I2 λ− I3 = 0 , I1 = trC , I2 = (detC) trC−1 , I3 = detC . (4.15)

The Cayley-Hamilton theorem tells us that C3 − I1 C2 + I2 C − I3 I = 0 . Multiplying both sides by C−1 , one concludes that
I3 C−1 = C2 − I1 C+ I2 I . This, in particular, implies that I2 = 1

2

(
I21 − trC2

)
.
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In terms of the principal invariants, one writes

S = 2
dΨ̂

dC♭
=

3∑
j=1

2Ψj
∂Ij
∂C♭

+
v

F−1

 3∑
j=1

2Ψ̃j
∂

e

Ij

∂
e

C♭

 v

F−⋆ , (4.18)

where

Ψj = Ψj(X, I1, I2, I3) :=
∂Ψ

∂Ij
, Ψ̃j = Ψ̃j(X,

e

I1,
e

I2,
e

I3) :=
∂Ψ̃

∂
e

Ij
, j = 1, 2, 3 . (4.19)

Therefore24

S = 2Ψ1 G
♯ + 2Ψ2 (I2 C

−♯ − I3 C
−2♯) + 2Ψ3 I3 C

−♯

+
v

F−1
î
2Ψ̃1 G

♯ + 2Ψ̃2

Ä e

I2
e

C−♯ −
e

I3
e

C−2♯
ä
+ 2Ψ̃3

e

I3
e

C−♯
ó v

F−⋆ .
(4.20)

Note that
v

F−1G♯
v

F−⋆ =
v

F∗G♯ ,
v

F−1
e

C−♯ v

F−⋆ =
v

F∗ e

C−♯ , and
v

F−1
e

C−2♯
v

F−⋆ =
v

F∗ e

C−2♯ . Thus

S = 2Ψ1 G
♯ + 2Ψ2 (I2 C

−♯ − I3 C
−2♯) + 2Ψ3 I3 C

−♯

+ 2Ψ̃1

v

F∗G♯ + 2Ψ̃2

v

F∗
Ä e

I2
e

C−♯ −
e

I3
e

C−2♯
ä
+ 2Ψ̃3

e

I3
v

F∗ e

C−♯ .
(4.21)

The Cauchy stress is related to the second Piola-Kirchhoff stress as σ = 1√
I3
FSF⋆ . Recall that FG♯F⋆ =

φ∗G♯ = b♯ , FC−♯F⋆ = FC−1G♯F⋆ = F(F−1F−T)FTg♯ = g♯ , and

FC−2♯F⋆ = FC−1C−1G♯F⋆ = F(F−1F−T)(F−1F−T)(FTg♯) = F−TF−1g♯ = c♯ . (4.22)

Thus

σ =
2√
I3

[(
I2 Ψ2 + I3 Ψ3

)
g♯ +Ψ1 b

♯ − I3 Ψ2 c
♯
]

+
2√
I3

e

F
î
Ψ̃1 G

♯ +
Ä e

I2 Ψ̃2 +
e

I3 Ψ̃3

ä e

C−♯ −
e

I3 Ψ̃2

e

C−2♯
ó e

F⋆

=
2√
I3

îÄ
I2 Ψ2 + I3 Ψ3 +

e

I2 Ψ̃2 +
e

I3 Ψ̃3

ä
g♯ +Ψ1 b

♯ + Ψ̃1

e

b♯ − I3 Ψ2 c
♯ −

e

I3 Ψ̃2
e
c♯
ó
.

(4.23)

For an incompressible isotropic solid, I3 =
e

I3 = 1 , and hence

σ = −pg♯ + 2Ψ1 b
♯ + 2Ψ̃1

e

b♯ − 2Ψ2 c
♯ − 2 Ψ̃2

e
c♯ , (4.24)

where p is the Lagrange multiplier associated with the incompressibility constraint J =
√
I3 = 1 .

Dissipation potential. For an isotropic viscoelastic solid, the dissipation potential must be invariant under
the orthogonal group, i.e.,

ϕ(X,FK,K−1
v

FK,K−1
v̇

FK,G,g) = ϕ(X,F,
v

F,
v̇

F,G,g) , ∀ K ∈ Orth(G) , (4.25)

for all deformation gradients F and viscous deformation gradients
v

F . Notice that even for an isotropic viscoelas-

tic solid, the dependence of ϕ on
v

F and
v̇

F cannot always be reduced to a dependence on the symmetric tensors
v

C♭ and
v̇

C♭ . Let λ2i (i = 1, 2, 3) be the eigenvalues of the symmetric tensor C♯ . Let us denote the corresponding
unit eigenvectors by Wi (i = 1, 2, 3). Thus, C♯ = λ21 W1 ⊗W1 + λ22 W2 ⊗W2 + λ23 W3 ⊗W3 . The dissipation
potential will be a functional of I1, I2, I3 , and the following 18 spectral invariants [Shariff, 2022]:

Fij = ⟨⟨Wi,
v

FWj⟩⟩G , F̃ij = ⟨⟨Wi,
v̇

FWj⟩⟩G , i, j = 1, 2, 3 , (4.26)

i.e., ϕ̂ = ϕ̄(I1, I2, I3, F11, F12, · · · , F33, F̃11, F̃12, · · · , F̃33) .
25

24See Appendix B for the derivatives of the principal invariants of C and
e

C .
25This functional form essentially means that, even in the isotropic case, while the dissipation potential depends only on the

three principal invariants of the right Cauchy-Green deformation tensor instead of its 6 components, there is no reduction in its

dependence on the non-symmetric tensors
v

F and
v̇

F; it still depends on all their 18 components. Note, however, that when these
components are written with respect to the eigenbasis {W1,W2,W3} , they are invariant under the orthogonal group.
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Remark 4.1. If one assumes that the dissipation potential has the functional form ϕ(X,
v

F,
v̇

F,G) , then for an

isotropic solid, ϕ is an isotropic functional of two non-symmetric material tensors
v

F and
v̇

F . Let µi (i = 1, 2, 3)

be the eigenvalues of the symmetric tensor
v

C♯ , where
v

C =
v

FT
v

F . Let us denote the corresponding eigenvectors

by Ui (i = 1, 2, 3). Thus,
v

C♯ = µ1U1 ⊗ U1 + µ2U2 ⊗ U2 + µ3U3 ⊗ U3 . The dissipation potential will be a
functional of the following 18 spectral invariants [Shariff, 2022]:

Fij = ⟨⟨Ui,
v

FUj⟩⟩G , F̃ij = ⟨⟨Ui,
v̇

FUj⟩⟩G , i, j = 1, 2, 3 , (4.27)

i.e., ϕ = ϕ̃(F11, F12, · · · , F33, F̃11, F̃12, · · · , F̃33) .

Kinetic equation. Following (B.14), one may write

∂Ψ

∂
e

C♭
=
∂ΨNEQ

∂
e

C♭
= Ψ̃1

∂
e

I1

∂
e

C♭
+ Ψ̃2

∂
e

I2

∂
e

C♭
+ Ψ̃3

∂
e

I3

∂
e

C♭
= Ψ̃1G

♯ + Ψ̃2

Ä e

I2
e

C−♯ −
e

I3
e

C−2♯
ä
+ Ψ̃3

e

I3
e

C−♯ . (4.28)

Hence, it follows from (3.8) that the kinetic equation for compressible isotropic viscoelastic solids reads26

∂ϕ

∂
v̇

F
− 2Ψ̃1

e

C♭G♯
v

F−⋆ − 2Ψ̃2

î e

I2I−
e

I3G
e

C−♯
ó v

F−⋆ − 2
e

I3Ψ̃3

v

F−⋆ = 0 ; (4.30)

and in the case of incompressible isotropic viscoelastic solids, the kinetic equation (3.12) is written as

∂ϕ

∂
v̇

F
− 2Ψ̃1

e

C♭G♯
v

F−⋆ − 2Ψ̃2

î e

I2I−G
e

C−♯
ó v

F−⋆ = q
v

F−⋆ . (4.31)

4.2.3 Transversely isotropic solids

A transversely isotropic solid at a material point X ∈ B has a material preferred direction that is specified by
a unit vector N(X) , which is normal to the plane of isotropy at that point.

Stress constitutive relation. The equilibrium and non-equilibrium free energies become isotropic functionals
of their arguments when the structural tensor A = N ⊗N is added to the list of their arguments [Doyle and
Ericksen, 1956; Spencer, 1982; Lu and Papadopoulos, 2000].27 Equivalently,

ΨEQ = Ψ(X, I1, I2, I3, I4, I5) , ΨNEQ = Ψ̃(X,
e

I1,
e

I2,
e

I3,
e

I4,
e

I5) , (4.32)

where

I1 = trC = CAA , I2 = detC tr C−1 = det(CAB)(C
−1)DD , I3 = detC = det(CAB) ,

I4 = N ·C ·N = NANB CAB , I5 = N ·C2 ·N = NANB CBM CMA ,
(4.33)

and
e

I1 = tr
e

C =
e

CAA ,
e

I2 = det
e

C tr
e

C−1 = det(
e

CAB)(
e

C−1)DD ,
e

I3 = det
e

C = det(
e

CAB) ,
e

I4 = N ·
e

C ·N = NANB
e

CAB ,
e

I5 = N ·
e

C2 ·N = NANB
e

CBM
e

CMA .
(4.34)

Note that for the extra invariants

∂I4
∂C♭

= N⊗N ,
∂I5
∂C♭

= N⊗ (G♯C♭N) + (G♯C♭N)⊗N , (4.35)

26Similarly to what was observed earlier in Footnote 23, the Cayley-Hamilton theorem for
e

C tells us that
e

I2I−
e

I3
e

C−1 =
e

I1
e

C−
e

C2 ,
which then changes the kinetic equation to the following equivalent form

∂ϕ

∂
v̇

F
− 2Ψ̃1

e

C♭G♯
v

F−⋆ + 2Ψ̃2

î e

C2♭ −
e

I1
e

C♭
ó
G♯

v

F−⋆ − 2
e

I3Ψ̃3
v

F−⋆ = 0 . (4.29)

27The functionals ΨEQ(X,Θ,F,A,G) , ΨNEQ(X,Θ,
e

F,A,G) , and Ψ(X,Θ,F,
e

F,A,G,g) are isotropic.
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and
∂

e

I4

∂
e

C♭
= N⊗N ,

∂
e

I5

∂
e

C♭
= N⊗ (G♯

e

C♭N) + (G♯
e

C♭N)⊗N . (4.36)

The second Piola-Kirchhoff stress has the following representation

S = 2
∂Ψ̂

∂C♭
=

5∑
j=1

2Ψj
∂Ij
∂C♭

+
v

F−1

 5∑
j=1

2Ψ̃j
∂

e

Ij

∂
e

C♭

 v

F−⋆ , (4.37)

where

Ψj = Ψj(X, I1, I2, I3, I4, I5) :=
∂Ψ

∂Ij
, Ψ̃j = Ψ̃j(X,

e

I1,
e

I2,
e

I3,
e

I4,
e

I5) :=
∂Ψ̃

∂
e

Ij
, j = 1, · · · , 5 . (4.38)

Thus

S = 2Ψ1 G
♯ + 2Ψ2 (I2 C

−♯ − I3 C
−2♯) + 2Ψ3 I3 C

−♯ + 2Ψ4 N⊗N+ 2Ψ5

î
N⊗ (G♯C♭N) + (G♯C♭N)⊗N

ó
+ 2Ψ̃1

v

F∗G♯ + 2Ψ̃2

Ä e

I2
v

F∗ e

C−♯ −
e

I3
v

F∗ e

C−2♯
ä
+ 2Ψ̃3

e

I3
v

F∗ e

C−♯ + 2Ψ̃4

v

F−1 [N⊗N ]
v

F−⋆

+ 2Ψ̃5

v

F−1
î
N⊗ (G♯

e

C♭N) + (G♯
e

C♭N)⊗N
ó v

F−⋆

= 2Ψ1 G
♯ + 2Ψ2 (I2 C

−♯ − I3 C
−2♯) + 2Ψ3 I3 C

−♯ + 2Ψ4 N⊗N+ 2Ψ5

î
N⊗ (G♯C♭N) + (G♯C♭N)⊗N

ó
+ 2Ψ̃1

v

F∗G♯ + 2Ψ̃2

Ä e

I2
v

F∗ e

C−♯ −
e

I3
v

F∗ e

C−2♯
ä
+ 2Ψ̃3

e

I3
v

F∗ e

C−♯ + 2Ψ̃4 (
v

F−1N)⊗ (
v

F−1N)

+ 2Ψ̃5

î
(

v

F−1N)⊗ (
v

F−1G♯
e

C♭N) + (
v

F−1G♯
e

C♭N)⊗ (
v

F−1N)
ó
.

(4.39)
Note that F

[
N⊗ (G♯C♭N) + (G♯C♭N)⊗N

]
F⋆ = n⊗ F(G♯C♭N) + F(G♯C♭N)⊗ n . Also notice that

F(G♯C♭N) = FG♯F⋆gFN = (FG♯F⋆)gn = b♯gn . (4.40)

Similarly
e

F(G♯
e

C♭N) =
e

b♯g
e
n , (4.41)

where
e
n =

e

FN . The Cauchy stress has the following representation

σ =
2√
I3

{ Ä
I2 Ψ2 + I3 Ψ3 +

e

I2 Ψ̃2 +
e

I3 Ψ̃3

ä
g♯ +Ψ1 b

♯ + Ψ̃1

e

b♯ − I3 Ψ2 c
♯ −

e

I3 Ψ̃2
e
c♯

+Ψ4 n⊗ n+Ψ5

[
n⊗ (b♯gn) + (b♯gn)⊗ n

]
+ Ψ̃4

e
n⊗ e

n+ Ψ̃5

î
e
n⊗ (

e

b♯g
e
n) + (

e

b♯g
e
n)⊗ e

n
ó}

.

(4.42)

For an incompressible isotropic solid, I3 =
e

I3 = 1 , and hence

σ = −pg♯ + 2Ψ1 b
♯ + 2Ψ̃1

e

b♯ − 2Ψ2 c
♯ − 2 Ψ̃2

e
c♯ + 2Ψ4 n⊗ n+ 2Ψ5

[
n⊗ (b♯gn) + (b♯gn)⊗ n

]
+ 2Ψ̃4

e
n⊗ e

n+ 2Ψ̃5

î
e
n⊗ (

e

b♯g
e
n) + (

e

b♯g
e
n)⊗ e

n
ó
,

(4.43)

where p is the Lagrange multiplier associated with the incompressibility constraint J =
√
I3 = 1 .

Dissipation potential. For a transversely isotropic viscoelastic solid, when the structural tensor A = N⊗N
is added to the list of the arguments of the dissipation potential ϕ , it becomes an isotropic functional of its

arguments ϕ = ϕ̂(X,C♭,
v

F,
v̇

F,A,G,g) . Although one may not use the standard representation theorem as for
the free energy functionals, the dissipation potential will be a functional of some standard invariants and a set
of spectral invariants, similarly to the dissipation potential of isotropic viscoelastic solids.
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Kinetic equation. Following (B.14) and (4.36), one may write

∂Ψ

∂
e

C♭
=
∂ΨNEQ

∂
e

C♭
= Ψ̃1

∂
e

I1

∂
e

C♭
+ Ψ̃2

∂
e

I2

∂
e

C♭
+ Ψ̃3

∂
e

I3

∂
e

C♭
+ Ψ̃4

∂
e

I4

∂
e

C♭
+ Ψ̃5

∂
e

I5

∂
e

C♭

= Ψ̃1G
♯ + Ψ̃2

Ä e

I2
e

C−♯ −
e

I3
e

C−2♯
ä
+ Ψ̃3

e

I3
e

C−♯ + Ψ̃4N⊗N+ Ψ̃5(N⊗ (
e

CN) + (
e

CN)⊗N) .

(4.44)

Hence, it follows from (3.8) that the kinetic equation for compressible transversely isotropic viscoelastic solids
reads

∂ϕ

∂
v̇

F
− 2Ψ̃1

e

C♭G♯
v

F−⋆ − 2Ψ̃2

î e

I2I−
e

I3G
e

C−♯
ó v

F−⋆ − 2
e

I3Ψ̃3

v

F−⋆

− 2Ψ̃4

e

C♭N⊗
v

F−1N− 2Ψ̃5

î e

C♭N⊗ (
v

F−1
e

CN) + (G
e

C2N)⊗
v

F−1N
ó
= 0 ;

(4.45)

and in the case of incompressible transversely isotropic viscoelastic solids, the kinetic equation (3.12) is written
as

∂ϕ

∂
v̇

F
− 2Ψ̃1

e

C♭G♯
v

F−⋆ − 2Ψ̃2

î e

I2I−G
e

C−♯
ó v

F−⋆ − 2Ψ̃4

e

C♭N⊗
v

F−1N

− 2Ψ̃5

î e

C♭N⊗ (
v

F−1
e

CN) + (G
e

C2N)⊗
v

F−1N
ó
= q

v

F−⋆ .

(4.46)

4.2.4 Orthotropic solids

An orthotropic solid at a material point X ∈ B has reflection symmetry with respect to three mutually per-
pendicular planes with G-orthonormal vectors N1(X) , N2(X) , and N3(X) , i.e., ⟨⟨Ni(X),Nj(X)⟩⟩G = δij .
A choice for structural tensors is the set Λ = {A1 = N1 ⊗ N1,A2 = N2 ⊗ N2,A3 = N3 ⊗ N3} . However,
A1 +A2 +A3 = I , and hence only two of them are independent.

Stress constitutive equations. One can take A1 and A2 to be the independent structural tensors of the
set Λ . When these two tensors are added to the list of the arguments of the equilibrium and non-equilibrium
free energies, they become isotropic functionals of their arguments.28 This is equivalent to the free energy
functionals each depending on seven invariants:

ΨEQ = Ψ(X, I1, I2, I3, I4, I5, I6, I7) , ΨNEQ = Ψ̃(X,
e

I1,
e

I2,
e

I3,
e

I4,
e

I5,
e

I6,
e

I7) , (4.47)

where
I1 = trC , I2 = detC trC−1 , I3 = detC ,

I4 = N1 ·C ·N1 , I5 = N1 ·C2 ·N1 ,

I6 = N2 ·C ·N2 , I7 = N2 ·C2 ·N2 ,

(4.48)

and
e

I1 = tr
e

C ,
e

I2 = det
e

C tr
e

C−1 ,
e

I3 = det
e

C ,
e

I4 = N1 ·
e

C ·N1 , I5 = N1 ·
e

C2 ·N1 ,
e

I6 = N2 ·
e

C ·N2 ,
e

I7 = N2 ·
e

C2 ·N2 ,

(4.49)

The Cauchy stress has the following representation

σ =
2√
I3

{ Ä
I2 Ψ2 + I3 Ψ3 +

e

I2 Ψ̃2 +
e

I3 Ψ̃3

ä
g♯ +Ψ1 b

♯ + Ψ̃1

e

b♯ − I3 Ψ2 c
♯ −

e

I3 Ψ̃2
e
c♯

+ 2Ψ4 n1 ⊗ n1 + 2Ψ5

[
n1 ⊗ (b♯gn1) + (b♯gn1)⊗ n1

]
+ 2Ψ6 n2 ⊗ n2 + 2Ψ7

[
n2 ⊗ (b♯gn2) + (b♯gn2)⊗ n2

]
+ 2Ψ̃4

e
n1 ⊗ e

n1 + 2Ψ̃5

î
e
n1 ⊗ (

e

b♯g
e
n1) + (

e

b♯g
e
n1)⊗ e

n1

ó
+ 2Ψ̃6

e
n2 ⊗ e

n2 + 2Ψ̃7

î
e
n2 ⊗ (

e

b♯g
e
n2) + (

e

b♯g
e
n2)⊗ e

n2

ó}
,

(4.50)

28The functionals ΨEQ(X,Θ,F,A1,A2,G) , ΨNEQ(X,Θ,
e

F,A1,A2,G) , and Ψ(X,Θ,F,
e

F,A1,A2,G,g) are isotropic.
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where
e
n1 =

e

FN1 ,
e
n2 =

e

FN2 , and

Ψj = Ψj(X, I1, I2, I3, I4, I5, I6, I7) :=
∂Ψ

∂Ij
, Ψ̃j = Ψ̃j(X,

e

I1,
e

I2,
e

I3,
e

I4,
e

I5,
e

I6,
e

I7) :=
∂Ψ̃

∂
e

Ij
, j = 1, · · · , 7 . (4.51)

For an incompressible isotropic solid, I3 =
e

I3 = 1 , and hence

σ = −pg♯ + 2Ψ1 b
♯ + 2Ψ̃1

e

b♯ −Ψ2 c
♯ − 2 Ψ̃2

e
c♯

+ 2Ψ4 n1 ⊗ n1 + 2Ψ5

[
n1 ⊗ (b♯gn1) + (b♯gn1)⊗ n1

]
+ 2Ψ6 n2 ⊗ n2 + 2Ψ7

[
n2 ⊗ (b♯gn2) + (b♯gn2)⊗ n2

]
+ 2Ψ̃4

e
n1 ⊗ e

n1 + 2Ψ̃5

î
e
n1 ⊗ (

e

b♯g
e
n1) + (

e

b♯g
e
n1)⊗ e

n1

ó
+ 2Ψ̃6

e
n2 ⊗ e

n2 + 2Ψ̃7

î
e
n2 ⊗ (

e

b♯g
e
n2) + (

e

b♯g
e
n2)⊗ e

n2

ó
,

(4.52)

where p is the Lagrange multiplier associated with the incompressibility constraint J =
√
I3 = 1 .

Dissipation potential. For an orthotropic viscoelastic solid, when two elements of the set of structural tensors
Λ are added to the list of the arguments of the dissipation potential ϕ , it becomes an isotropic functional of

its arguments, e.g., ϕ = ϕ̂(X,C♭,
v

F,
v̇

F,A1,A2,G,g) . Although one may not use the standard representation
theorem as for the free energy functionals, the dissipation potential will be a functional of some standard
invariants and a set of spectral invariants, similarly to the dissipation potential of the isotropic viscoelastic
solids.

Kinetic equation. Following (B.14) and (4.36), one may write
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e
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∂
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e
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e

CN2) + (
e

CN2)⊗N2) .

(4.53)

Hence, it follows from (3.8) that the kinetic equation for compressible orthotropic viscoelastic solids reads

∂ϕ

∂
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F
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e

C♭G♯
v

F−⋆ − 2Ψ̃2

î e

I2I−
e
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e

C2N2)⊗
v

F−1N2) = 0 ;

(4.54)

and in the case of incompressible orthotropic viscoelastic solids, the kinetic equation (3.12) is written as

∂ϕ

∂
v̇

F
− 2Ψ̃1

e

C♭G♯
v

F−⋆ − 2Ψ̃2

î e

I2I−G
e
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ó v
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v
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e
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v
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e

CN1) + (G
e

C2N1)⊗
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e

C♭N2 ⊗
v

F−1N2 − 2Ψ̃7(
e

C♭N2 ⊗ (
v

F−1
e

CN2) + (G
e

C2N2)⊗
v

F−1N2) = q
v

F−⋆ .

(4.55)

4.2.5 Monoclinic solids

A monoclinic solid at a material point X ∈ B has three material preferred directions {N1(X),N2(X),N3(X)}
such that N1 ·N2 ̸= 0 and N3 is normal to the plane of N1 and N2 [Merodio and Ogden, 2020].
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Stress constitutive equations. The equilibrium and non-equilibrium free energies of a monoclinic solid
depend on nine invariants [Spencer, 1986]:

ΨEQ = ΨEQ(X, I1, I2, I3, I4, I5, I6, I7, I8, I9) , ΨNEQ = ΨNEQ(X,
e

I1,
e

I2,
e

I3,
e

I4,
e

I5,
e

I6,
e

I7,
e

I8,
e

I9) . (4.56)

For each free energy, the first seven invariants are identical to those of orthotropic solids (4.48) and (4.49). The
three extra invariants are

I8 = IN1 ·C ·N2 ,
e

I8 = IN1 ·
e

C ·N2 , I9 =
e

I9 = I2 , I = N1 ·N2 . (4.57)

Note that

∂I8
∂C♭

=
1

2
I (N1 ⊗N2 +N2 ⊗N1) ,

∂I9
∂C♭

= 0 ,
∂

e

I8

∂
e

C♭
=

1

2
I (N1 ⊗N2 +N2 ⊗N1) ,

∂
e

I9

∂
e

C♭
= 0 . (4.58)

The Cauchy stress has the following representation

σ =
2√
I3

{ Ä
I2 Ψ2 + I3 Ψ3 +

e

I2 Ψ̃2 +
e

I3 Ψ̃3
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(4.59)

For an incompressible monoclinic solid

σ = −pg♯ + 2Ψ1 b
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e
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♯ − 2 Ψ̃2

e
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]
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e
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n1) .

(4.60)

Dissipation potential. For a monoclinic viscoelastic solid, when the full set of structural tensors

Λ = {A1 = N1 ⊗N1,A2 = N2 ⊗N2,A3 = N3 ⊗N3} (4.61)

is added to the list of the arguments of the dissipation potential ϕ , it becomes an isotropic functional of its

arguments, i.e., ϕ = ϕ̂(X,C♭,
v

F,
v̇

F,A1,A2,A3,G,g) . Although one may not use the standard representation
theorem as for the free energy functionals, the dissipation potential will be a functional of some standard
invariants and a set of spectral invariants, similarly to the dissipation potential of isotropic viscoelastic solids.

Kinetic equation. Following (B.14), (4.36), and (4.58), one may write
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∂
e

I1

∂
e

C♭
+ Ψ̃2

∂
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(4.62)
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Hence, it follows from (3.8) that the kinetic equation for compressible monoclinic viscoelastic solids is written
as

∂ϕ

∂
v̇

F
− 2Ψ̃1

e

C♭G♯
v
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î e
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F−⋆ − 2
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I3Ψ̃3

v
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e

C♭N1 ⊗
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e

C♭N1 ⊗
v

F−1N2 +
e
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v

F−1N1) = 0 ;

(4.63)

and in the case of incompressible monoclinic viscoelastic solids, the kinetic equation (3.12) reads
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v
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(4.64)

4.3 Invariance in anelasticity and viscoelasticity: A critical discussion of some of
the existing works

The notion of invariance and its interpretation in the presence of inelastic deformations has eluded mechanicians
over the past few decades. Invariance is a central notion in physics, and particularly in mechanics; there is a
deep connection between balance laws and symmetries. Noether’s theorems tell us that any symmetry of the
Lagrangian density (or action) corresponds to a conserved quantity or a balance law [Kosmann-Schwarzbach
et al., 2011; Marsden and Ratiu, 2013]. For example, invariance under time shifts corresponds to the balance
of energy. As another example, for continuum mechanics formulated in a Euclidean ambient space, the balance
of angular momentum corresponds to invariance under rigid body rotations in the ambient space. On the other
hand, local invariance in the reference configuration is related to material symmetry.

The work of Green and Naghdi. Green and Naghdi [1971] observed that for any proper orthogonal tensor

Q , the multiplicative decomposition of the deformation gradient can be written as F =
e

F
p

F =
e

FQQT
p

F , and

hence
e

F and
p

F can be replaced by
e

FQ and QT
p

F , respectively. However, it should be noted that replacing
e

F by
e

FQ implies that Q is an element of the material symmetry group G . Assuming that Q is any proper orthogonal
tensor (or rotation) is equivalent to assuming that the material is isotropic. In other words, Green and Naghdi
[1971]’s argument is incorrect for anisotropic solids; there is a G-ambiguity in the multiplicative decomposition
and not an SO(3)-ambiguity, see also Yavari and Sozio [2023].

The work of Simo. In formulating finite plasticity, Simo [1988] considered the multiplicative decomposition

of the deformation gradient into elastic and plastic parts: F =
e

F
p

F . He considered coordinate charts {xi} and
{XI} for the current and reference configurations, respectively. The spatial metric has components gij and the

metric of the reference configuration has components GIJ . Looking at the coordinate representation of
p

F in

Eq.(1.2b) in [Simo, 1988], clearly it is assumed that
p

F is a linear map from the tangent space of the reference

configuration to itself (
p

F : TXB → TXB in our notation). This means that the “intermediate configuration” is
identified with TXB . After Eq.(1.2b), it is explicitly mentioned that “where we have endowed the intermediate
configuration with the metric tensor G ”. In other words, the same metric is used in both the reference and

intermediate configurations. Simo [1988] assumes a free energy function of the form ψ = ψ̂(g,
e

F,F) (an explicit
dependence on G is suppressed perhaps because the flat metric G is induced from the spatial metric g). Then
“invariance under rigid-body motions superposed onto the intermediate configuration” is assumed that Simo
[1988] writes as

ψ̂(g,
e

FQ,F) = ψ̂(g,
e

F,F) , ∀Q ∈ SO(3) , (4.65)
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i.e., for any rotation Q in the “intermediate configuration”. Recall that
e

F : TXB → TxC and F : TXB → TxC ,

i.e.,
e

F and F have the same tensor character, and hence (4.65) does not make sense; F must be transformed as
well. Simo was aware that not including F as an argument of the free energy in (4.65) implies material isotropy.
He introduced F as an argument in the free energy that is unchanged under “rotations in the intermediate
configuration” in order to avoid material isotropy [Simo, 1988, Remark 1.6]. However, assuming invariance with
respect to the “intermediate configuration” is equivalent to material symmetry under all rotations and indeed
precludes anisotropic response. In his last piece of work before passing that was posthumously published,29 Simo
remarked that [Simo, 1998, Remark 34.2]: “The entire issue depends on an a priori specification of the class of
admissible rotations Q for such transformations. This question is related to a constitutive assumption on the
symmetry group of the material and appears to have little to do with any fundamental principle in continuum
physics”.

The work of Gurtin and Anand. Gurtin and Anand [2005] studied material symmetry in the presence

of local plastic deformations. They call the target space of
p

F “relaxed space”, which is usually called “inter-
mediate configuration”. They treated it as an entity completely independent from the reference and current
configurations; independent in the sense that the “relaxed space” is not affected by either referential or spatial
transformations. This assumption leads to the definition of two symmetry groups, namely, “referential symme-

try group” and “relaxational symmetry group”. More specifically, they assumed a free energy ψ = ψ̂(
p

F,
e

F) .
The two symmetry groups are defined as

ψ̂(
p

F,
e

F) = ψ̂(
p

FH,
e

F) , ∀H ∈ Gref ,

ψ̂(
p

F,
e

F) = ψ̂(H−1
p

F,
e

FH) , ∀H ∈ Grel .
(4.66)

An “intermediate configuration” or a “relaxed space” is defined pointwise, and for a given point, it is a linear
space. The total deformation gradient is a linear map between tangent spaces of the material and the ambient
space manifolds: F : TXB → TxS . There are only two spaces (manifolds) in anelasticity and viscoelasticity: the
ambient space manifold S (which is usually assumed to be the Euclidean 3-space)30 and the material manifold

B (which is an embedded 3-submanifold of the Euclidean ambient space). In the decomposition F =
e

F
p

F ,
e

F

and
p

F are linear maps. Their domain and target spaces can be either TXB or TxC (see Fig. 2.1). In other
words, assuming a third linear space distinct from TXB and TxC does not have physical relevance. Therefore,
the correct symmetry group should be defined as

ψ̂(
p

F,
e

F) = ψ̂(H−1
p

FH,
e

FH) , ∀H ∈ G . (4.67)

The work of Kumar and Lopez-Pamies. Kumar and Lopez-Pamies [2016] assumed that
e

F and
v

F are
compatible—see their Eq. (4). In addition to the reference Ω0 and current Ω configurations, a global intermediate

configuration Ωv was also assumed—see their Fig. 2. Under a material symmetry K , they assumed that
v

F

is transformed to
v

FK , and hence,
e

F = F
v

F−1 remains unchanged, since (FK)(
v

FK)−1 =
e

F . It was finally
concluded that ΨNEQ is unaltered by material symmetry. First, it should be noted that there is no reason to

expect that
e

F (and consequently
v

F) is compatible. In other words, a global Euclidean intermediate configuration

does not exist, in general. Further, knowing that
v

F(X) : TXB → TXB , a change of material configuration by K

transforms
v

F to K−1
v

FK and
e

F to
e

FK (see Fig. 3a). In [Kumar and Lopez-Pamies, 2016], it was assumed that

ΨEQ = ΨEQ(X,F,G,g) and ϕ = ϕ(X,
v

F,
v̇

F,G) have the same symmetry group, but ΨNEQ = ΨNEQ(X,
e

F,G,g)

was excluded seemingly because it was assumed that
e

F was not affected by material symmetries. In light of

the discussion in §2.3,
e

F(X) : TXB → TxC , and it hence seems natural to assume that ΨNEQ has the same
symmetry group as well.

29We thank Sanjay Govindjee for bringing this reference to our attention.
30In some applications the ambient space could be curved, in general. See Yavari et al. [2016] for a detailed discussion and

examples.
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The work of Ciambella and Nardinocchi. In a recent paper [Ciambella and Nardinocchi, 2021] aiming

to formulate a theory of anisotropic viscoelasticity, the multiplicative decomposition F =
e

F
v

F was used. The

authors recognized that
e

F and
v

F are incompatible, in general. However, they confused viscoelasticity with

anelasticity and assumed that
v

F defines a local relaxed configuration (after their Eq. (2.1), they say that the
viscous deformation gradient acts on a small piece of the body and maps it “into its relaxed (or natural) state
at time t ”.). This is an incorrect assumption. Their choice of the free energy in their Eq. (3.13) is identical to
what one would see in anelasticity. Ciambella and Nardinocchi [2021] also claimed that a theory of nonlinear
viscoelasticity has to be “structurally frame indifferent”. They based this claim on the work of Green and
Naghdi [1971]. In summary, invariance in the “intermediate configuration” or “structural invariance” is not
physically meaningful. The above-mentioned fundamentally questionable assumptions, unfortunately, make the
formulation presented in [Ciambella and Nardinocchi, 2021] flawed.

What have we learned? The source of confusion in the literature has been a lack of understanding of the
mathematical nature of “intermediate configuration”. A body B is an embedded topological submanifold of
the Euclidean ambient space S . In nonlinear elasticity, B is equipped with a metric that is induced from the
ambient space. This defines a Euclidean material manifold. In anelasticity and viscoelasticity, “intermediate
configuration” has traditionally been defined locally; a local intermediate configuration is a linear space with
a Euclidean metric. One should note that in the case of the direct Bilby-Kröner-Lee decomposition, an inter-
mediate configuration (manifold) has the same topology as B . However, an intermediate configuration cannot
be isometrically embedded in the Euclidean space because the material metric is non-Euclidean, in general. In
anelasticity and viscoelasticity, there are only two manifolds that are of physical significance: (i) the ambient
space manifold S , which is the Euclidean 3-space, and (ii) the material manifold B , which is an embedded
topological submanifold of S . Any local invariance is either defined for x ∈ S on TxS , or for X ∈ B on TXB .
The former invariance is the material-frame-indifference (objectivity), and the latter is related to material sym-
metry; any “intermediate configuration invariance” is nothing but a material symmetry, in the case of the direct
Bilby-Kröner-Lee decomposition.

Table 1 summarizes some of the important fields, constitutive equations, and governing equations of nonlinear
anisotropic viscoelasticity.

5 Examples

In this section, we study three examples of large deformations of isotropic and anisotropic viscoelastic solids.
To simplify the kinematics we assume incompressible solids. The deformations considered in this section are
subsets of the known universal deformations for incompressible isotropic [Ericksen, 1955; Yavari, 2021] and
anisotropic solids [Yavari and Goriely, 2021, 2023]. Universal deformations are those deformations that can
be maintained in the absence of body forces for any material in a given class. For homogeneous compressible
isotropic solids, Ericksen [1955] showed that the only universal deformations are homogeneous deformations. For
homogeneous incompressible isotropic solids, in addition to isochoric homogeneous deformations, Ericksen [1954]
found four families of universal deformations. A fifth family was later on discovered independently by Singh
and Pipkin [1965] and Klingbeil and Shield [1966]. For some recent generalizations of Ericksen’s problem to
inhomogeneous and anisotropic solids, and anelasticity see Yavari [2021]; Yavari and Goriely [2021, 2023, 2016],
and Goodbrake et al. [2020].31 The stress at any material point in a simple material at time t depends only
on the history of the deformation gradient at that point up to time t [Noll, 1958]. Carroll [1967] showed that
the known universal deformations of homogeneous incompressible isotropic elastic solids are universal for simple
materials as well. One should note that (simple) viscoelastic solids are a subclass of simple materials. It should,
however, be noted that Carroll [1967] assumed that the total deformation is volume preserving. Here, we assume
that both the local elastic and viscoelastic deformations are volume preserving.

31The analogue of universal deformations in linear elasticity are universal displacements [Truesdell, 1966; Gurtin, 1972; Yavari
et al., 2020; Yavari and Goriely, 2023, 2022; Yavari, 2023].
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Nonlinear Anisotropic Viscoelasticity

Kinematics

F =
e

F
v

F
v

F(X) : TXB → TXB
e

F(X) : TXB → TxC

Free energy Isotropic solids

Ψ = ΨEQ +ΨNEQ ΨEQ = ΨEQ(X,F,G,g) = Ψ̂EQ(X,C
♭,G)

ΨNEQ = ΨNEQ(X,
e

F,G,g) = Ψ̂NEQ(X,
e

C♭,G)

Λ: structural tensors Anisotropic solids
v

Λ =
v

F∗Λ: viscous structural tensors ΨEQ = ΨEQ(X,Θ,F,G,Λ,g) = Ψ̂EQ(X,Θ,C
♭,G,Λ)

v

G =
v

F∗G: viscous material metric ΨNEQ = ΨNEQ(X,Θ,F,
v

G,
v

Λ,g) = Ψ̂NEQ(X,Θ,C
♭,

v

G,
v

Λ)

Dissipation potential
v

B = −∂ϕ/∂
v̇

F (dissipative viscous-force) ϕ = ϕ(X,F,
v

F,
v̇

F,G,g) = ϕ̂(X,C♭,
v

F,
v̇

F,G)

Material symmetry group
ΨEQ(X,FK,G,g) = ΨEQ(X,F,G,g)

ΨNEQ(X,
e

FK,G,g) = ΨNEQ(X,
e

F,G,g)

ϕ(X,FK,K∗ v

F,K∗ v̇

F,G,g) = ϕ(X,F,
v

F,
v̇

F,G,g)

∀ K ∈ GX ⩽ Orth(G)

The Clausius-Duhem inequality

η̇ = 2
e

C♭ ∂Ψ̂NEQ

∂
e

C♭

v

F−⋆ :
v̇

F ≥ 0 (compressible solids)

η̇ = 2
e

C♭ ∂Ψ̂NEQ

∂
e

C♭

v

F−⋆ :
v̇

F+ q
v

F−⋆ ≥ 0 (incompressible solids)

The Balance of linear momentum

Div

ñ
2F

∂Ψ̂

∂C♭
+ 2

e

F
∂Ψ̂

∂
e

C♭

ô
+ ρoB = ρoA (compressible solids)

Div

ñ
2F

∂Ψ̂

∂C♭
+ 2

e

F
∂Ψ̂

∂
e

C♭
− pg♯F−⋆

ô
+ ρoB = ρoA (incompressible solids)

Kinetic equation

∂ϕ/∂
v̇

F+ ∂Ψ̃/∂
v

F = 0 (compressible solids)

∂ϕ/∂
v̇

F+ ∂Ψ̃/∂
v

F = q
v

F−⋆ (incompressible solids)

Table 1: Summary of the main fields, constitutive equations, and governing equations of nonlinear viscoelasticity.
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5.1 Quadratic dissipation potentials

Kumar and Lopez-Pamies [2016] assumed the following form for the dissipation potential

ϕ(X,F,
v

F,
v̇

F,G) =
1

2

v̇

F :A(F,
e

F,G,g) :
v̇

F =
1

2

v̇

FKL AK
L
M
N

v̇

FMN , (5.1)

where A(F,
e

F,G,g) is a positive-definite fourth-order tensor.32 It is clear that only the major symmetric part
of A contributes to dissipation, and indeed, by definition (5.1) above, A has major symmetries. However, A does
not necessarily have any minor symmetries.33

Adding the set of structural tensors Λ to its arguments, the dissipation potential ϕ = ϕ(X,F,
v

F,
v̇

F,Λ,G)
becomes an isotropic functional, i.e.,

K∗ϕ(X,F,
v

F,
v̇

F,Λ,G) = ϕ(X,K∗F,K∗ v

F,K∗ v̇

F,K∗Λ,G) = ϕ(X,F,
v

F,
v̇

F,Λ,G) , ∀K ∈ Orth(G) . (5.2)

It hence follows that

K∗ v̇

F :A(K∗F,K∗ e

F,K∗Λ,G,g) :K∗ v̇

F =
v̇

F :A(F,
e

F,Λ,G,g) :
v̇

F , ∀F,
e

F,
v̇

F ,∀K ∈ Orth(G) , (5.3)

where we recall that K∗ v̇

F = K−1
v̇

FK , K∗F = FK , and K∗ =
e

FK . Therefore34

K∗A(F,
e

F,Λ,G,g) = A(F,
e

F,Λ, ,G,g) , ∀K ∈ Orth(G) . (5.4)

Hence, A = A(F,
e

F,Λ,G,g) is an isotropic tensor. The most general isotropic fourth-order tensor has the
following representation [Jog, 2006]

AKBMD = η1GKBGMD + η2GKDGBM + η3GKMGBD , (5.5)

where ηi = ηi(F,
e

F,Λ,G,g) = η̂i(C
♭,

e

C♭,Λ,G) for i = 1, 2, 3 . Thus

AK
L
M
N = AKBMD G

BLGDN = η1 δ
L
Kδ

N
M + η2 δ

N
Kδ

L
M + η3GKMG

LN . (5.6)

The dissipation potential is written as

ϕ =
1

2
η1

(
v̇

FAA

)2
+

1

2
η2

v̇

FAB
v̇

FBA +
1

2
η3GAC

v̇

FCDG
DB

v̇

FAB

=
1

2
η1

(
tr

v̇

F
)2

+
1

2
η2 tr

(
v̇

F2
)
+

1

2
η3 tr

(
v̇

F
v̇

FT
)
.

(5.7)

In order to find the necessary and sufficient conditions on η1, η2 , and η3 to ensure positive-definiteness of the ten-
sor A , we introduce new indices Γ = {AB} such that {11, 12, 13, 21, 22, 23, 31, 32, 33} ↔ {1, 2, 3, 4, 5, 6, 7, 8, 9} .
Now, in a Cartesian coordinate system, the dissipation potential is rewritten as ϕ = 1

2CΓΛ ḞΓḞΛ . The tensor A
is positive-definite if and only if the 9× 9 matrix C is positive-definite. It may be found that the eigenvalues of
the matrix C are 3η1 + η2 + η3 , η2 + η3 , and −η2 + η3 . Therefore, A is positive-definite if and only if35

3η1 + η2 + η3 > 0 , η2 + η3 > 0 , −η2 + η3 > 0 . (5.8)

Choosing (5.6), we have

∂ϕ

∂
v̇

FAB

= η1
v

FMM δBA + η2
v̇

FBA + η3GAM
v̇

FMN G
NB . (5.9)

32Notice that (5.1), along with the positive definiteness of A , trivially satisfies the Clausius–Duhem inequality (3.29) (and (3.33)
for the incompressible case).

33Notice that for the dissipation potential ϕ(X,F,
v

F,
v̇

F,G) = 1
2

v̇

C : B(F,
e

F,G,g) :
v̇

C , which is a particular case of (5.1) for

AK
L
M

N
= 4GKJ

v

FJ
IBILAN

v

FB
AGBM , the minor symmetries hold for B .

34Note that in components, the left hand side of (5.4) reads

[K∗A]A
B

C
D = K−I

AKB
JK

−K
CKD

LAI
J
K

L .

35It is seen that η2 = η3 is not acceptable, and hence, A cannot have minor symmetries.
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Or
∂ϕ

∂
v̇

F
= η1(tr

v̇

F) I+ η2
v̇

F⋆ + η3 G
v̇

FG♯ , (5.10)

where tr
v̇

F =
v̇

FCC . With this choice, the kinetic equation (4.31) is simplified to read

η1(tr
v̇

F) I+ η2
v̇

F⋆ + η3 G
v̇

FG♯ − 2Ψ̃1

e

C♭G♯
v

F−⋆ + 2Ψ̃2

î e

C2♭ −
e

I1
e

C♭
ó
G♯

v

F−⋆ = q
v

F−⋆ . (5.11)

5.2 Example 1: Finite extension of an incompressible isotropic circular cylindrical
bar

Kinematics. Let us consider a solid circular cylindrical bar subject to an axial loading. In its undeformed
configuration, it has radius R0 and length L0 . We consider longitudinal and radial deformations and assume
the following deformation ansatz:

r = r(R, t) , θ = Θ , z = λ(t)Z , (5.12)

where λ(t) is the axial stretch. In a displacement-control loading, the longitudinal stretch λ(t) is given, while
in a force-controlled loading, it is an unknown function to be determined. Acting on an initially stress-free
unloaded bar, i.e., λ(0) = 1 , it is assumed that loading (either force or displacement-control) is slow enough
such that the inertial effects can be ignored. The deformation gradient reads

F = F(R, t) =

r,R(R, t) 0 0
0 1 0
0 0 λ(t)

 . (5.13)

Incompressibility J = 1 implies that r(R, t) = R√
λ(t)

. In terms of its physical components, the deformation

gradient reads

F̂ = F̂(R, t) =


1√
λ(t)

0 0

0 1√
λ(t)

0

0 0 λ(t)

 . (5.14)

We use a semi-inverse method and assume that the viscous deformation gradient has the following form

v

F =
v

F(R, t) =

av(R, t) 0 0
0 bv(R, t) 0
0 0 λv(R, t)

 . (5.15)

At the initial unloaded state, we have
v

F(R, 0) = I , i.e., av(R, 0) = bv(R, 0) = λv(R, 0) = 1 . Incompressibility

of the local viscous deformation implies that
v

J(R, t) = av(R, t) bv(R, t)λv(R, t) = 1 , and hence bv(R, t) =
1

av(R,t)λv(R,t)
. The physical components of the viscous deformation gradient read

âv(R, t) = av(R, t) , b̂v(R, t) = bv(R, t) =
1

av(R, t)λv(R, t)
, λ̂v(R, t) = λv(R, t) . (5.16)

Since F =
e

F
v

F , it follows that the elastic deformation gradient has the following form

e

F =
e

F(R, t) =

ae(R, t) 0 0
0 be(R, t) 0
0 0 λe(R, t)

 , (5.17)

where

ae(R, t) =
1

λ
1
2 (t)av(R, t)

, be(R, t) =
1

bv(R, t)
= av(R, t)λv(R, t) , λe(R, t) =

λ(t)

λv(R, t)
. (5.18)

The physical components read

âe(R, t) =
1

λ
1
2 (t)av(R, t)

, b̂e(R, t) =
av(R, t)λv(R, t)

λ
1
2 (t)

, λ̂e(R, t) =
λ(t)

λv(R, t)
. (5.19)
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Remark 5.1. It should be noted that F is homogeneous. However,
v

F, and consequently
e

F, are not compatible,

in general. Recall that incompatibility of
v

F is controlled by exterior derivative of
v

F (or its curl), i.e., d
v

F , which

has components
v

FAB,C −
v

FAC,B [Yavari, 2013]. Note that

v

F2
2,1 −

v

F2
1,2 =

∂bv(R, t)

∂R
,

v

F3
3,1 −

v

F3
1,3 =

∂λv(R, t)

∂R
. (5.20)

This means that
v

F is compatible if and only if (a solid bar is simply-connected)

∂bv(R, t)

∂R
=
∂λv(R, t)

∂R
= 0 . (5.21)

Kinetic equations. We assume an isotropic quadratic dissipation potential (5.7). We obtain three indepen-
dent kinetic equations for av(R, t) , λv(R, t) , and q(R, t)—the Lagrange multiplier corresponding to viscous
incompressibility. We then proceed to eliminate q(R, t) from the system of kinetic equations and are left with
the following two independent kinetic equations for av(R, t) and λv(R, t):



λλv
î
η1
(
a2vλv − 1

)2
+ (η2 + η3)

(
a4vλ

2
v + 1

)ó
ȧv

+ λav
[
η1
(
a2vλv − 1

) (
avλ

2
v − 1

)
+ η2 + η3

]
λ̇v = 2avλv

(
1− a4vλ

2
v

) î
λ2vΨ̃1 + λ2Ψ̃2

ó
,

λv
{
(η1 + η2 + η3) a

3
vλv − η1

(
a2vλ

2
v + av − λv

)}
ȧv

+ av
{
η1
(
a2vλ

2
v + λv − av

)
− (η1 + η2 + η3) avλ

3
v

}
λ̇v = −2

(
λ3a2v − λ2v

) î
λΨ̃1 + a2vλ

2
vΨ̃2

ó
/λ2 .

(5.22a)

(5.22b)

Recall that following viscous incompressibility, i.e.,
v

J = 1 , we have bv =
1

avλv
. We may then recast the kinetic

equations (5.22) above in terms of bv and λv . It is hence found that the kinetic equations in terms of {bv, λv}
are identical to (5.22) in terms of {av, λv} , such that the evolutions of av and bv are both governed by the
same equations; and since they are subject to the same initial condition av(R, 0) = bv(R, 0) = 1 , it follows

that bv(R, t) = av(R, t) , and hence that av = λ
− 1

2
v . Therefore, (5.22) may be reduced to a single differential

equation in terms of λv as followsî
2η1 + η2 + η3 − 4η1λ

3/2
v + 2 (η1 + η2 + η3)λ

3
v

ó
λ2λ̇v = 4

(
λ3 − λ3v

) î
Ψ̃1λ+ Ψ̃2λv

ó
. (5.23)

Stress and equilibrium equations. Following (4.24), the non-zero components of the Cauchy stress are

σrr(R, t) = −p(R, t) + 2Ψ1

λ(t)
− 2Ψ2 λ(t) +

2Ψ̃1 λv(R, t)

λ(t)
− 2Ψ̃2 λ(t)

λv(R, t)
, (5.24a)

σθθ(R, t) = −p(R, t)λ(t)
R2

+
2Ψ1

R2
− 2Ψ2 λ

2(t)

R2
+

2Ψ̃1 λv(R, t)

R2
− 2Ψ̃2 λ

2(t)

R2 λv(R, t)
, (5.24b)

σzz(R, t) = −p(R, t) + 2Ψ1 λ
2(t)− 2Ψ2

λ2(t)
+

2Ψ̃1 λ
2(t)

λ2v(R, t)
− 2Ψ̃2 λ

2
v(R, t)

λ2(t)
, (5.24c)

where p = p(R, t) is the Lagrange multiplier corresponding to incompressibility, i.e., J = 1 . The only nontrivial
equilibrium equation is σrr,r +

1
rσ

rr − rσθθ = 0 . In terms of the referential coordinates, this reads

∂

∂R
σrr(R, t) = 0 . (5.25)

Since the lateral area of the cylinder is traction-free, it follows that σrr(R0, t) = 0 . Therefore, σrr(R, t) = 0 and

p(R, t) =
2Ψ1

λ2(t)
− 2Ψ2 λ(t) +

2Ψ̃1

λ(t) a2v(R, t)
− 2Ψ̃2 λ(t) a

2
v(R, t) . (5.26)
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Hence, it follows that σθθ(R, t) = 0 , and the only non-zero stress component is σzz , which reads 36

σ̂zz(R, t) = 2

ï
λ2(t)− 1

λ(t)

ò
Ψ1 + 2

ï
λ(t)− 1

λ2(t)

ò
Ψ2

+ 2

ï
λ2(t)

λ2v(R, t)
− λv(R, t)

λ(t)

ò
Ψ̃1 + 2

ï
λ(t)

λv(R, t)
− λ2v(R, t)

λ2(t)

ò
Ψ̃2 .

(5.27)

The force at the two ends of the bar (Z = 0, L) is written as

F (t) = 2π

∫ r(R0)

0

σzz(R, t)r dr = 2π

∫ R0

0

σ̂zz(R, t)λ−1(t)RdR , (5.28)

which is expanded to read

2

ï
λ(t)− 1

λ2(t)

ò ∫ R0

0

RΨ1 dR+ 2

ï
1− 1

λ3(t)

ò ∫ R0

0

RΨ2 dR

+ 2

∫ R0

0

R

ï
λ(t)

λ2v(R, t)
− λv(R, t)

λ2(t)

ò
Ψ̃1 dR+ 2

∫ R0

0

R

ï
1

λv(R, t)
− λ2v(R, t)

λ3(t)

ò
Ψ̃2 dR =

F (t)

2π
.

(5.29)

Example 5.1. In this example, we assume a neo-Hookean viscoelastic solid

ΨEQ = Ψ(I1, I2) =
µ

2
(I1 − 3) , ΨNEQ = Ψ̃(

e

I1,
e

I2) =
µe
2
(

e

I1 − 3) . (5.30)

Thus, Ψ1 = 1
2µ , Ψ̃1 = 1

2µe , and Ψ2 = Ψ̃2 = 0 . The kinetic equation is then simplified to read[
2η1 + η2 + η3 − 4η1λ

3
2
v + 2 (η1 + η2 + η3)λ

3
v

]
λ λ̇v = 2µe

(
λ3 − λ3v

)
. (5.31)

It is seen that the ODE governing the time evolution of λv(R, t) does not depend on R ; and since the initial
condition λv(R, 0) = 1 does not depend on R either, it follows that λv does not depend on R , i.e., λv = λv(t) .
By inspection of the dimensional quantities involved in the problem at hand, one may identify τ = η1

µ as

a viscoelastic dissipation characteristic time of (5.31) above and the resulting time evolution of the viscous

deformation gradient
v

F(t) . In this case, the only non-zero physical stress component is independent of R and
reads

σ̂zz(t) = µ

Å
λ2 − 1

λ

ã
+ µe

Å
λ2

λ2v
− λv

λ

ã
. (5.32)

Displacement-control loading. We start with a displacement-control loading. Let us assume a loading such
that the longitudinal stretch has the following form

λ(t) =



1 + (λ0 − 1) erf

Å
t

t0

ã
, 0 ≤ t ≤ t1 ,

λ(t1) +
1− λ(t1)

2
erf

Å
t− t1
t0

ã
, t1 ≤ t ≤ t2 ,

λ(t2) + (1− λ(t2)) erf

Å
t− t2
t0

ã
, t2 ≤ t ≤ tf ,

(5.33)

where erf is the error function, t0 is the loading characteristic time, t1 = 25t0 , t2 = 50t0 , tf = 75t0 , and λ0 is
the stretch at large times t0 ≪ t < t1 . For a displacement-controlled loading, the following initial-value problem
needs to be solved for λv :[

2η1 + η2 + η3 − 4η1λ
3
2
v + 2 (η1 + η2 + η3)λ

3
v

]
λ λ̇v = 2µe

(
λ3 − λ3v

)
, λv(0) = 1 . (5.34)

36Note that the longitudinal physical component of stress is given by σ̂zz(R, t) = σzz(R, t) .
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Figure 4: Numerical results for the time evolution of the strain and stress state of an isotropic neo-Hookean viscoelastic bar subject
to displacement-control loading λ(t) (5.33) with different characteristic times t0 versus the viscoelastic dissipation characteristic
time τ = η1

µ
of the system.

Force-control loading. For a force-control loading, the force required to maintain the deformation is exactly
F (t) as in (5.28). In the case of a neo-Hookean solid, (5.29) is simplified to read

µR2
0

2

ï
λ(t)− 1

λ2(t)

ò
+
µeR

2
0

2

ï
λ(t)

λ2v(t)
− λv(t)

λ2(t)

ò
=
F (t)

2π
. (5.35)

Here, we assume the following loading

F (t) =



F0 erf

Å
t

t0

ã
, 0 ≤ t ≤ t1 ,

F0 +
F (t1)

2
erf

Å
t− t1
t0

ã
, t1 ≤ t ≤ t2 ,

F0

2
− F (t2) erf

Å
t− t2
t0

ã
, t2 ≤ t ≤ tf ,

(5.36)

where t0 is the loading characteristic time, t1 = 25t0 , t2 = 50t0 , tf = 75t0 , and F0 is the force at large times
t0 ≪ t < t1 . For a force-control loading, we solve the following initial-value problem for λv and λ:

µR2
0

2

[
λ(t)− λ−2(t)

]
+
µeR

2
0

2

ï
λ(t)

λ2v(R, t)
− λv(R, t)

λ2(t)

ò
=
F (t)

2π
,î

2η1 + η2 + η3 − 4η1λ
3/2
v + 2 (η1 + η2 + η3)λ

3
v

ó
λ λ̇v = 2µe

(
λ3 − λ3v

)
,

λv(0) = 1 .

(5.37a)

(5.37b)

(5.37c)
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Figure 5: Numerical results for the time evolution of the strain and stress state of an isotropic neo-Hookean viscoelastic bar subject
to force-control loading F (t) (5.36) with different characteristic times t0 versus the viscoelastic dissipation characteristic time
τ = η1

µ
of the system.

33



Numerical results. Let us consider a solid cylinder made of an isotropic neo-Hookean viscoelastic solid with
µe = 1

2µ and a dissipation potential of the form (5.6) such that η1 = η2 = 1
2η3 . In this example, an explicit

finite difference scheme has been used to numerically solve the governing equations.
Let us first look at the displacement-control loading case as we subject the structure to the longitudinal

loading λ(t) (5.33) with λ0 = 1.5 . We numerically solve the displacement-control governing Eq. (5.34) assuming
different loading characteristic times t0 , respectively smaller, equal, and larger than the characteristic time of
the viscoelastic bar. In Fig. 4, we plot the profile of the given displacement-control loading λ(t) and the
resulting evolution of the kinematic quantities λv , av , λe , ae , and the outer radius r at R = R0 as well as the
longitudinal physical stress component. As the cylindrical bar is subjected to a longitudinal stretch load in three
stages—loading followed by partial unloading and then full unloading—we observe in each of the stages that
the cylinder experiences stress relaxation: The bar first experiences an instantaneous fast elastic stress response
followed by a slow stress relaxation (decrease in the loading stage and increase in the unloading stages) under
a constant imposed displacement. Note, however, that this is not observed for t0 = 10τ , since the loading does
not reach a steady state of constant λ .

Next, we look at the force-control loading case as we subject the structure to the force loading F (t) (5.36) with
F0 = µR2

0 . We numerically solve the force-control governing Eq. (5.37) assuming different loading characteristic
times t0 , respectively smaller, equal, and larger than the characteristic time of the viscoelastic bar. In Fig. 5,
we plot the profile of the given force-control loading F (t) and the resulting evolution of the kinematic quantities
λv , av , λe , ae , and the outer radius r at R = R0 , as well as the longitudinal physical stress component.
As the bar is subjected to an axial force in three stages—loading followed by partial unloading and then full
unloading—we observe in each of the stages that the bar experiences creep: The bar first experiences a fast
elastic deformation but continues to slowly deform even as the force reaches a steady state.

In both cases, we observe that the cross section shrinks as the bar is loaded and expands back again as the bar
is unloaded. Interestingly, and in both loading cases, the elastic deformation gradient features a behaviour akin
to a strain relaxation as its physical components experience a fast elastic response followed by a slower relaxation
under constant loading towards its initial value at the unloaded state. However, the viscous deformation gradient
experiences what is akin to creep as it undergoes a fast response followed by a slow evolution towards matching
the total deformation gradient F̂ at large times under constant loading—λ̂v approaches λ and âv = b̂v approaches
F̂
r
R = F̂ θΘ = λ−

1
2 . That is, at large times under constant loading in each of the three loading stages, we have

ê

F = I and
v̂

F = F as previously discussed in Remark 3.4.

5.3 Example 2: Finite torsion of an incompressible transversely isotropic circular
cylindrical bar

Kinematics. Let us consider a solid circular cylindrical bar that, in its undeformed configuration, has radius
R0 and length L0 . In this example, we assume that the cylindrical bar is transversely isotropic with helical
material preferred directions. One can think of this bar as being a homogeneous isotropic solid cylinder reinforced
by helical fibers. More precisely, for fixed R ∈ (0, R0] , it is assumed that fibers are along a family of helices
tangent to the fiber direction N = N(R,Θ) . Recall that in cylindrical coordinates, the tangent to a helix has
a vanishing radial coordinate. Let us denote by γ(R) the angle that N(R,Θ) makes with EΘ(Θ) = ∂

∂Θ . Thus,

N(R,Θ) = cos γ(R)/REΘ(Θ) + sin γ(R)EZ , where EZ = ∂
∂Z .37

Given the helical symmetry of the problem, we assume the following deformation ansatz:

r = r(R, t) , θ = Θ+ ψ(t)Z , z = λ(t)Z , (5.38)

where ψ(t) is the twist per unit length, and λ(t) is the axial stretch. In a twist-force-control loading, the twist
ψ(t) and force F (t) are prescribed, while λ(t) is an unknown. In a torque-force-control loading, the torque T (t)
and force F (t) are prescribed, and both ψ(t) and λ(t) are unknown functions.38 The deformation gradient reads

F = F(R, t) =

r′(R, t) 0 0
0 1 ψ(t)
0 0 λ(t)

 , (5.39)

37Let us recall that N is a G-unit vector, i.e., NANBGAB = R2(NΘ)2 + (NZ)2 = 1 and this is why the 1
R

factor shows up in
the Θ-component.

38The other two possible loadings are twist-displacement and torque-displacement-control loadings that we will not consider in
our numerical examples.
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where r′(R, t) = ∂r(R,t)
∂R . The incompressibility implies that

J =

…
detg

detG
detF =

λ(t) r(R, t) r′(R, t)
R

= 1 . (5.40)

Assuming that r(0, t) = 0 , one obtains r(R, t) = R√
λ(t)

. In terms of its physical components, the deformation

gradient reads

F̂ = F̂(R, t) =


1√
λ(t)

0 0

0 1√
λ(t)

Rψ(t)√
λ(t)

0 0 λ(t)

 . (5.41)

We again use a semi-inverse method and assume that the viscous deformation gradient has the following form

v

F =
v

F(R, t) =

av(R, t) 0 0
0 bv(R, t) ψv(R, t)
0 0 λv(R, t)

 . (5.42)

Incompressibility of the local viscous deformation implies that av(R, t) bv(R, t)λv(R, t) = 1 . The physical
components of the viscous deformation gradient read

âv(R, t) = av(R, t) , b̂v(R, t) = bv(R, t) =
1

av(R, t)λv(R, t)
, λ̂v(R, t) = λv(R, t) , ψ̂v(R, t) = ψv(R, t) .

(5.43)
For a torque-force-control loading, the unknown fields of the problem are λ(t) , ψ(t) , av(R, t) , ψv(R, t) , and
λv(R, t) , while for a twist-force-control loading, ψ(t) is prescribed and the unknown fields are λ(t) , av(R, t) ,
ψv(R, t) , and λv(R, t) . In this problem, the elastic deformation gradient has the following form

e

F =
e

F(R, t) =

ae(R, t) 0 0
0 be(R, t) ψe(R, t)
0 0 λe(R, t)

 . (5.44)

Knowing that F =
e

F
v

F implies that

e

F =
e

F(R, t) =


1√

λ(t) av(R,t)
0 0

0 av(R, t)λv(R, t)
ψ(t)

λv(R,t)
− ψv(R, t)av(R, t)

0 0 λ(t)
λv(R,t)

 . (5.45)

The physical components read

âe(R, t) =
1

λ
1
2 (t)av(R, t)

, b̂e(R, t) =
av(R, t)λv(R, t)

λ
1
2 (t)

,

λ̂e(R, t) =
λ(t)

λv(R, t)
, ψ̂e(R, t) =

Rψ(t)

λ
1
2 (t)λv(R, t)

− Rψv(R, t)av(R, t)

λ
1
2 (t)

.

(5.46)

Remark 5.2. Notice that F is homogeneous. However,
v

F, and consequently
e

F, are not compatible, in general,
because

v

F2
2,1 −

v

F2
1,2 =

∂bv(R, t)

∂R
,

v

F2
3,1 −

v

F2
1,3 =

∂ψv(R, t)

∂R
,

v

F3
3,1 −

v

F3
1,3 =

∂λv(R, t)

∂R
. (5.47)

This implies that
v

F is compatible if and only if

∂bv(R, t)

∂R
=
∂ψv(R, t)

∂R
=
∂λv(R, t)

∂R
= 0 . (5.48)
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Stress and equilibrium equations. The principal invariants read

I1 = λ2(t) +
2

λ(t)
+
R2ψ2(t)

λ(t)
, I2 = 2λ(t) +

1

λ2(t)
+
R2ψ2(t)

λ2(t)

I4 =
cos2 γ + sin2 γ

(
λ3 +R2ψ2

)
+Rψ sin 2γ

λ

I5 = λ4 sin2 γ +
(cos γ +Rψ sin γ)

[
Rψ sin γ

(
2λ3 +R2ψ2 + 1

)
+ cos γ

(
R2ψ2 + 1

)]
λ2

.

(5.49)

The non-zero physical components of the Cauchy stress are σ̂rr = σrr , σ̂θθ = r2σθθ , σ̂zz = σzz , and σ̂θz = rσθz .
The diagonal components read

σ̂rr(R, t) = −p+ 2Ψ1

λ
− 2λΨ2 +

2Ψ̃1

λ a2v
− 2Ψ̃2 λ a

2
v , (5.50)

σ̂θθ(R, t) = −p+ 2
1 +R2ψ2

λ
Ψ1 − 2λΨ2 +

2(cos γ +Rψ sin γ)2

λ
Ψ4

+
4(cos γ +Rψ sin γ)

[
Rψ

(
λ3 +R2ψ2 + 1

)
sin γ +

(
R2ψ2 + 1

)
cos γ

]
λ2

Ψ5 ,

+
2
[
avλv

(
av
(
R2λvψ

2
v + λ3v

)
− 2R2ψψv

)
+R2ψ2

]
λλ2v

Ψ̃1

− 2λ

a2vλ
2
v

Ψ̃2 +
2 [avλv (λv cos γ −Rψv sin γ) +Rψ sin γ]

2

λλ2v
Ψ̃4

+
4

λ2λ4v
(avλv (cos γλv −R sin γψv) +Rψ sin γ)

×
{
(R sin γ (ψ − avλvψv)

î
avλv

(
av
(
R2λvψ

2
v + λ3v

)
− 2R2ψψv

)
+ λ3 +R2ψ2

ó
+ av cos γλ

2
v

(
avλv

(
av
(
R2λvψ

2
v + λ3v

)
− 2R2ψψv

)
+R2ψ2

)}
Ψ̃5 ,

(5.51)

and

σ̂zz(R, t) = −p+ 2λ2 Ψ1 −
2
(
R2ψ2 + 1

)
λ2

Ψ2 + 2λ2 sin2 γΨ4

+ 4λ sin γ
[
λ3 sin γ +Rψ(cos γ +Rψ sin γ)

]
Ψ5 +

2λ2

λ2v
Ψ̃1

− 2
(
avλv

(
av
(
R2λvψ

2
v + λ3v

)
− 2R2ψψv

)
+R2ψ2

)
λ2a2vλ

2
v

Ψ̃2 +
2λ2 sin2 γ

λ2v
Ψ̃4

+
4λ sin γ

λ4v

{
Ravλv [R sin γ ψv (avλvψv − 2ψ) + cos γ λv (ψ − avλvψv)] + sin γ

(
λ3 +R2ψ2

)}
Ψ̃5 .

(5.52)
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The only non-zero shear stress is

σ̂θz(R, t) = 2R
√
λψΨ1 +

2Rψ√
λ

Ψ2 + 2
√
λ sin γ (cos γ +Rψ sin γ)Ψ4

+
sin 2γ

(
λ3 + 3R2ψ2 + 1

)
− 2Rψ cos 2γ

(
λ3 +R2ψ2

)
+ 2Rψ

(
λ3 +R2ψ2 + 1

)
√
λ

Ψ5

+
2R

√
λ (ψ − avλvψv)

λ2v
Ψ̃1 +

2R (ψ − avλvψv)√
λ a2vλ

2
v

Ψ̃2 +
2
√
λ sin γ (avλv (cos γ λv −R sin γ ψv) +Rψ sin γ)

λ2v
Ψ̃4

+
1√
λλ4v

{
2av sin γ λv

(
λ3 + 3R2ψ2

)
(cos γ λv − 2R sin γ ψv)

+ 2Rψa2vλ
2
v

(
6R2 sin2 γ ψ2

v − 3R sin 2γ λvψv + λ2v
)

+ a3vλ
3
v

(
−4R3 sin2 γ ψ3

v + 3R2 sin 2γ λvψ
2
v − 2Rλ2vψv + sin 2γ λ3v

)
+ 4Rψ sin2 γ

(
λ3 +R2ψ2

)}
Ψ̃5 .

(5.53)
The only nontrivial equilibrium equation is σrr,r +

1
rσ

rr − rσθθ = 0 . In terms of the referential coordinates,
this reads

∂

∂R
σrr(R, t) = f(R, t) , (5.54)

where

f(R, t) =
2Rψ2

λ
Ψ1 +

2(cos γ +Rψ sin γ)2

λR
Ψ4

+
4(cos γ +Rψ sin γ)

[
Rψ sin γ

(
λ3 +R2ψ2 + 1

)
+ cos γ

(
R2ψ2 + 1

)]
λ2R

Ψ5

+ 2
a2v
[
avλv

(
av
(
R2λvψ

2
v + λ3v

)
− 2R2ψψv

)
+R2ψ2

]
− λ2v

λRa2vλ
2
v

Ψ̃1

+
2λ
(
a4vλ

2
v − 1

)
Ra2vλ

2
v

Ψ̃2 +
2 (avλv (cos γλv −R sin γψv) +Rψ sin γ)

2

λRλ2v
Ψ̃4

4 [avλv (cos γλv −R sin γψv) +Rψ sin γ]

λ2Rλ4v

{
R sin γ (ψ − avλvψv)

×
î
avλv

(
av
(
R2λvψ

2
v + λ3v

)
− 2R2ψψv

)
+ λ3 +R2ψ2

ó
+ av cos γλ

2
v

(
avλv

(
av
(
R2λvψ

2
v + λ3v

)
− 2R2ψψv

)
+R2 ψ2

)}
Ψ̃5 .

(5.55)

Assuming that the boundary cylinder is traction free, i.e., σrr(R0, t) = 0 , one obtains

σrr(R, t) = −
∫ R0

R

f(ξ, t) dξ . (5.56)

This, in particular, implies that

−p = −
∫ R0

R

f(ξ, t) dξ − 2Ψ1

λ
+ 2λΨ2 −

2Ψ̃1

λ a2v
+ 2Ψ̃2 λ a

2
v . (5.57)
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The normal stress components σ̂θθ and σ̂zz are now simplified to read

σ̂θθ(R, t) = −
∫ R0

R

f(ξ, t) dξ +
2R2ψ2

λ
Ψ1 +

2(cos γ +Rψ sin γ)2

λ
Ψ4

+
4(cos γ +Rψ sin γ)

[
Rψ sin γ

(
λ3 +R2ψ2 + 1

)
+ cos γ

(
R2ψ2 + 1

)]
λ2

Ψ5

+
2
(
R2a4vλ

2
vψ

2
v − 2R2ψa3vλvψv +R2ψ2a2v + a4vλ

4
v − λ2v

)
λa2vλ

2
v

Ψ̃1

+
2λ
(
a4vλ

2
v − 1

)
a2vλ

2
v

Ψ̃2 +
2 [avλv (cos γλv −R sin γψv) +Rψ sin γ]

2

λλ2v
Ψ̃4

+
4

λ2λ4v
(avλv (cos γλv −R sin γψv) +Rψ sin γ)

×
{
(R sin γ (ψ − avλvψv)

î
avλv

(
av
(
R2λvψ

2
v + λ3v

)
− 2R2ψψv

)
+ λ3 +R2ψ2

ó
+ av cos γλ

2
v

(
avλv

(
av
(
R2λvψ

2
v + λ3v

)
− 2R2ψψv

)
+R2ψ2

)}
Ψ̃5 ,

(5.58)

and

σ̂zz(R, t) = −
∫ R0

R

f(ξ, t) dξ + 2

Å
λ2 − 1

λ

ã
Ψ1 +

2

λ2
(
λ3 −R2ψ2 − 1

)
Ψ2

+ 2λ2 sin2 γΨ4 + 4λ sin γ
[
λ3 sin γ +Rψ(cos γ +Rψ sin γ)

]
Ψ5 + 2

λ3a2v − λ2v
λλ2v av

Ψ̃1

+ 2
−R2a2vλ

2
vψ

2
v + 2R2ψavλvψv + λ3a4vλ

2
v − a2vλ

4
v −R2ψ2

λ2a2vλ
2
v

Ψ̃2 +
2λ2 sin2 γ

λ2v
Ψ̃4

+
4λ sin γ

λ4v

[
Ravλv (R sin γ ψv (avλvψv − 2ψ) + cos γ λv (ψ − avλvψv)) + sin γ

(
λ3 +R2ψ2

)]
Ψ̃5 .

(5.59)
For a force-control loading at the two ends of the bar (Z = 0, L), the axial force and torque required to

maintain the deformation are calculated as

F (t) = 2π

∫ R0

0

P zZ(R, t)RdR = 0 ,

T (t) = 2π

∫ R0

0

P̄ θZ(R, t)R2 dR = 2π

∫ R0

0

P θZ(R, t) r(R, t)R2 dR ,

(5.60)

where P̄ zZ = P zZ is the zZ-component of the first Piola-Kirchhoff stress and P̄ θZ = rP θZ is the physical
θZ component of the first Piola-Kirchhoff stress. Recall the relation P = JσF−⋆ , or in components P aA =
JσabF−A

b . Thus, P
zZ = λ−1σzz and P θZ = λ−1σθz , and hence

P̄ zZ(R, t) = − 1

λ

∫ R0

R

f(ξ, t) dξ + 2

Å
λ− 1

λ2

ã
Ψ1 +

2

λ3
(
λ3 −R2ψ2 − 1

)
Ψ2

+ 2λ sin2 γΨ4 + 4 sin γ
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λ3 sin γ +Rψ(cos γ +Rψ sin γ)

]
Ψ5 + 2
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λ2 λ2v a

2
v

Ψ̃1

+ 2
−R2a2vλ

2
vψ

2
v + 2R2ψavλvψv + λ3a4vλ

2
v − a2vλ

4
v −R2ψ2

λ3a2vλ
2
v

Ψ̃2 +
2λ sin2 γ

λ2v
Ψ̃4

+
4 sin γ

λ4v

{
Ravλv [R sin γ ψv (avλvψv − 2ψ) + cos γ λv (ψ − avλvψv)] + sin γ

(
λ3 +R2ψ2

)}
Ψ̃5 ,

(5.61)
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and

P̄ θZ(R, t) =
2Rψ

λ
1
2

Ψ1 +
2Rψ

λ
3
2

Ψ2 +
2 sin γ(cos γ +Rψ sin γ)

λ
1
2

Ψ4

+
sin 2γ

(
λ3 + 3R2ψ2 + 1

)
− 2Rψ cos 2γ

(
λ3 +R2 ψ2

)
+ 2Rψ

(
λ3 +R2ψ2 + 1

)
λ

3
2

Ψ5

+
2R (ψ − avλvψv)

λ
1
2λ2v

Ψ̃1 +
2R (ψ − avλvψv)

λ
3
2 a2vλ

2
v

Ψ̃2

+
2 sin γ [avλv (λv cos γ −Rψv sin γ) +Rψ sin γ]

λ
1
2λ2v

Ψ̃4

+
1

λ
3
2λ4v

{
2avλv

(
λ3 + 3R2ψ2

)
(λv cos γ − 2Rψv sin γ) sin γ

+ 2Rψa2vλ
2
v

(
6R2ψ2

v sin
2 γ − 3Rλvψv sin 2γ + λ2v

)
+ a3vλ

3
v

(
−4R3ψ3

v sin
2 γ + 3R2λvψ

2
v sin 2γ − 2Rλ2vψv + λ3v sin 2γ

)
+ 4Rψ

(
λ3 +R2ψ2

)
sin2 γ

}
Ψ̃5 .

(5.62)

Kinetic equations. The three kinetic equations for ȧv , λ̇v , and ψ̇v are written as

∂ϕ

∂ȧv
+
∂

e

I1
∂av

Ψ̃1 +
∂

e

I2
∂av

Ψ̃2 +
∂

e

I4
∂av

Ψ̃4 +
∂

e

I5
∂av

Ψ̃5 = 0 ,

∂ϕ

∂λ̇v
+
∂

e

I1
∂λv

Ψ̃1 +
∂

e

I2
∂λv

Ψ̃2 +
∂

e

I4
∂λv

Ψ̃4 +
∂

e

I5
∂λv

Ψ̃5 = 0 ,

∂ϕ

∂ψ̇v
+
∂

e

I1
∂ψv

Ψ̃1 +
∂

e

I2
∂ψv

Ψ̃2 +
∂

e

I4
∂ψv

Ψ̃4 +
∂

e

I5
∂ψv

Ψ̃5 = 0 .

(5.63)

Example 5.2. For the numerical examples, we consider the following incompressible neo-Hookean reinforced
model:

ΨEQ = Ψ(I1, I4) =
µ

2
(I1 − 3) +

µ1

2
(I4 − 1)

2
, ΨNEQ = Ψ̃(

e

I1,
e

I4) =
µe
2
(

e

I1 − 3) +
µe1
2

(
e

I4 − 1)
2
, (5.64)

where µ1 and µe1 are positive constants. Thus, Ψ1 = µ
2 , Ψ2 = 0 , Ψ4 = µ1(I4 − 1) , Ψ5 = 0 , Ψ̃1 = µe

2 , Ψ̃2 = 0 ,

Ψ̃4 = µe1(
e

I4 − 1) , and Ψ̃5 = 0 . For this material

f(R, t) =
Rψ2

λ
µ+

2(cos γ +Rψ sin γ)2

λR
µ1(I4 − 1)

+
a2v
(
avλv

(
av
(
R2λvψ

2
v + λ3v

)
− 2R2ψψv

)
+R2ψ2

)
− λ2v

λRa2vλ
2
v

µe

+
2 (avλv (cos γλv −R sin γψv) +Rψ sin γ)

2

λRλ2v
µe1(

e

I4 − 1) .

(5.65)

Thus, the axial force and torque are written as

F (t)

2π
= − 1

λ

∫ R0

0

R

∫ R0

R

f(ξ, t) dξ dR+

Å
λ− 1

λ2

ã
µ

2
R2

0 + 2µ1λ

∫ R0

0

R(I4 − 1) sin2 γ dR

+ µe

∫ R0

0

λ3a2v − λ2v
λ2 λ2v a

2
v

RdR+ 2µe1 λ

∫ R0

0

(
e

I4 − 1)
sin2 γ

λ2v
RdR ,

(5.66a)

T (t)

2π
=
R4

0 ψ

4λ
1
2

µ+ 2µ1

∫ R0

0

(I4 − 1)
sin γ(cos γ +Rψ sin γ)

λ
1
2

R2 dR+ µe

∫ R0

0

R (ψ − avλvψv)

λ
1
2λ2v

R2 dR

+ 2µe1

∫ R0

0

(
e

I4 − 1)
sin γ [avλv (cos γλv −R sin γψv) +Rψ sin γ]

λ
1
2λ2v

R2 dR .

(5.66b)
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For the neo-Hookean material (5.64), the kinetic equations (5.63) simplify to read

a4vλ
2λ3v (η2 + η3) + a2vλ

2λ2v
(
a2vλv − 1

)
η1 − λ2λv

(
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)
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ȧv
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)
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2
(
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)
η1 + avλ
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a4vλ

3
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2ψ2
v − 1

)
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2ψψv
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+
2(λv cos γ −Rψv sin γ)

[
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2
v cos γ +R(ψ − avλvψv) sin γ

]
λ2λ3v

×
[
a2vλ

4
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(
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)
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(5.67)
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(
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a3vλ
2λ5v

ȧv

+
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2λ5v (η2 + η3) + a2vλ
2λ3v

(
avλ

2
v − 1

)
η1 − avλ

2λv
(
avλ

2
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4
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+
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a2vλ

4
v +

(
a2vλ

4
v − avλvR

2ψψv + λ3 +R2ψ2
)
cos 2γ − a2vλ

3
vRψv sin 2γ + avλvR

2ψψv − λ3 −R2ψ2
]

λ2λ5v

×
{
a2vλ

4
v cos

2 γ +
[
R2(ψ − avλvψv)

2 + λ3
]
sin2 γ − λ2v [avR(avλvψv − ψ) sin 2γ + λ]

}
µe1 = 0 ,

(5.68)

and

η3R ψ̇v +
avR(avλvψv − ψ)

λλv
µe

− 2av
[
avλ

2
v cos γ +R(ψ − avλvψv) sin γ

]
sin γ

λ2λ3v

×
{
a2vλ

4
v cos

2 γ +
[
R2(ψ − avλvψv)

2 + λ3
]
sin2 γ − λ2v [avR(avλvψv − ψ) sin 2γ + λ]

}
µe1 = 0 .

(5.69)

Numerical results. We consider a solid cylinder made of a transversely isotropic neo-Hookean viscoelastic
solid such that µe =

1
2µ , µ1 = 1

2µ , and µe1 = 1
2µ with helically symmetric preferred directions along Θ = 1

6π ,
and a dissipation potential of the form (5.6) such that η1 = η2 = 1

2η3 . In this example, an implicit finite
difference scheme has been used to numerically solve the governing equations.

Let us first look at the twist-force-control loading case and let the bar be free to deform in the longitudinal
direction, i.e., F (t) = 0 , and subject it to the following twist loading

ψ(t) =



ψ0 erf

Å
t

t0

ã
, 0 ≤ t ≤ t1 ,

ψ0 +
ψ(t1)

2
erf

Å
t− t1
t0

ã
, t1 ≤ t ≤ t2 ,

ψ0

2
− ψ(t2) erf

Å
t− t2
t0

ã
, t2 ≤ t ≤ tf ,

(5.70)

where t0 is the loading characteristic time, t1 = 25t0 , t2 = 50t0 , tf = 75t0 , and ψ0 = 1
R0

is the angle of
twist per unit length at large times t0 ≪ t < t1 . In this case, we need to solve the governing PDEs (kinetic
equations) (5.67)–(5.69) coupled with the integral Eq. (5.66a) with F = 0 and prescribing a twist loading
ψ(t) given by (5.70). We numerically solve this system of equations assuming different loading characteristic
times t0 , respectively smaller than, equal to, and larger than the characteristic time of the viscoelastic cylinder
τ = η1

µ . In Fig. 6, given the twist loading ψ(t) , we plot the profile of the corresponding physical component
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Figure 6: Numerical results for the time evolution of the strain and stress state of a transversely isotropic neo-Hookean bar subject
to twist-force-control loading F (t) = 0 and (5.70) at the two ends of the bar with different characteristic times t0 versus the
viscoelastic dissipation characteristic time τ = η1

µ
of the system.
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Figure 7: Numerical results for the time evolution of the strain and stress state of a transversely isotropic neo-Hookean bar subject
to torque-force-control loading F (t) = 0 and (5.71) at the ends of the bar with different characteristic times t0 versus the viscoelastic
dissipation characteristic time τ = η1

µ
of the system.
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ψ̂(R0, t) = R0ψ(t)√
λ(t)

as well as the resulting time evolution of the kinematic quantities λ ψ̂v , λ̂v , âv , b̂v , ψ̂e ,

λ̂e , âe , b̂e , and r at R = R0 , as well as the non-zero stress physical components at R = 1
2R0 . As the bar is

twist-loaded, we observe stress relaxation on all the non-zero stress components: First, the bar experiences a
fast elastic stress response followed by a slow relaxation towards a steady state of stress under a constant twist
angle in each of the loading stages. We also observe that the bar elongation follows the trend of the imposed
twist while its outer radius follows an inverse trend. However, the physical components of both the viscous
and elastic deformation gradients experience what may be described as strain relaxation. Ultimately, we see
that the elastic deformation gradient relaxes towards its unloaded state, and the viscous deformation gradient

approaches the total deformation gradient, i.e.,
ê

F = I and
v̂

F = F̂ , at large times under constant twist for each
of the loading stages, as was previously discussed in Remark 3.4.

Next, we look at the torque-force-control loading case and let the cylinder be free to deform in the longitudinal
direction, i.e., F (t) = 0 , and subject it to the following end torque

T (t) =



T0 erf

Å
t

t0

ã
, 0 ≤ t ≤ t1 ,

T0 +
T (t1)

2
erf

Å
t− t1
t0

ã
, t1 ≤ t ≤ t2 ,

T0
2

− T (t2) erf

Å
t− t2
t0

ã
, t2 ≤ t ≤ tf ,

(5.71)

where t0 is the loading characteristic time, t1 = 25t0 , t2 = 50t0 , tf = 75t0 , and T0 = µR3
0 is the end torque

at large times t0 ≪ t < t1 . In this case, we need to solve the governing PDEs (kinetic equations) (5.67)–(5.69)
coupled with the integral Eqs. (5.66) with F = 0 and T (t) as given by (5.71). We numerically solve this system of
equations assuming different loading characteristic times t0 , respectively smaller than, equal to, and larger than
the characteristic time of the viscoelastic cylinder τ = η1

µ . In Fig. 7, we plot the profile of the torque loading T

as well as the resulting time evolution of the kinematic quantities ψ̂ , λ ψ̂v , λ̂v , âv , b̂v , ψ̂e , λ̂e , âe , b̂e , and r at
R = R0 , as well as the non-zero stress physical components at R = 1

2R0 . As the cylinder is torque-loaded, we
observe that it experiences creep: First, it elastically deforms instantaneously then continues to slowly deform
even as the torque reaches a constant steady state. This can be seen in the evolution of the elongation λ(t)

and the outer radius r(R0, t) . Except for the viscous elongation λ̂v , which experiences an evolution akin to
creep, all the other physical components of the viscous and the elastic deformation gradients experience a strain
relaxation. However, here again, and in accordance with Remark 3.4, the elastic deformation gradient relaxes
towards its unloaded state, while the viscous deformation gradient approaches the total deformation gradient,

i.e.,
ê

F = I and
v̂

F = F̂ , at large times under constant torque for each of the loading stages.

5.4 Example 3: Inflation of an incompressible isotropic viscoelastic thick spherical
shell

Kinematics. Let us consider a thick spherical shell subject to a uniform time-dependent inner pressure pi(t) .
In its undeformed configuration, it has inner and outer radii R1 and R2 , respectively. Let (R,Θ,Φ) and (r, θ, ϕ)
be spherical coordinate systems in the reference and current configurations, respectively, with their origins at the
centers of the respective configurations of the spherical shell. Following the spherical symmetry of the problem,
we consider a radial deformation ansatz:

r = r(R, t) , θ = Θ , ϕ = Φ . (5.72)

Therefore, the material and spatial metrics have the following representations:

G =

1 0 0
0 R2 0
0 0 R2 sin2 Θ

 , g =

1 0 0
0 r2 0
0 0 r2 sin2 Θ

 , (5.73)
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and the deformation gradient reads

F = F(R, t) =

r′(R, t) 0 0
0 1 0
0 0 1

 , (5.74)

where r′(R, t) = ∂r(R, t)/∂R . Incompressibility J = 1 implies that r2(R, t) r′(R, t) = R2 . Thus, r(R, t) =[
R3 + C3(t)

] 1
3 for some time-dependent function C(t) . At t = 0 , the thick shell is in its undeformed configu-

ration, i.e., r(R, 0) = R ; hence, the unknown function C(t) satisfies the initial condition C(0) = 0 . In terms of
its physical components, the deformation gradient reads

F̂ = F̂(R, t) =

 R2

r2(R,t) 0 0

0 r(R,t)
R 0

0 0 r(R,t)
R

 . (5.75)

In order to be consistent with spherically-symmetric universal eigenstrains [Goodbrake et al., 2021], we assume
the following form for the viscous deformation gradient

v

F =
v

F(R, t) =

av(R, t) 0 0
0 bv(R, t) 0
0 0 bv(R, t)

 . (5.76)

At t = 0 , in the initial unloaded state,
v

F(R, 0) = I , i.e., av(R, 0) = bv(R, 0) = 1 . Incompressibility
v

J = 1
implies that av(R, t) b

2
v(R, t) = 1 . The physical components of the viscous deformation gradient read

âv(R, t) = av(R, t) , b̂v(R, t) = bv(R, t) =
1√

av(R, t)
. (5.77)

Since F =
e

F
v

F , it follows that the elastic deformation gradient has the following form

e

F =
e

F(R, t) =

ae(R, t) 0 0
0 be(R, t) 0
0 0 be(R, t)

 , (5.78)

where

ae(R, t) =
R2

[R3 + C3(t)]
2
3

a−1
v (R, t) , be(R, t) = b−1

v (R, t) =
»
av(R, t) . (5.79)

Its physical components read

âe(R, t) =
R2

[R3 + C3(t)]
2
3

a−1
v (R, t) , b̂e(R, t) =

[
R3 + C3(t)

] 1
3

R
b−1
v (R, t) =

[
R3 + C3(t)

] 1
3

R

»
av(R, t) .

(5.80)

Remark 5.3.
v

F is compatible if and only if ∂bv(R,t)∂R = 0 .

Stress and equilibrium equations. Following (4.24), the non-zero components of the Cauchy stress are

σrr(R, t) = −p+ 2R4

(R3 + C3)
4
3

Ψ1 −
2
(
R3 + C3

) 4
3

R4
Ψ2 +

2R4

a2v (R
3 + C3)

4
3

Ψ̃1 −
2a2v

(
R3 + C3

) 4
3

R4
Ψ̃2 , (5.81a)

σθθ(R, t) = − p

(R3 + C3)
2
3

+
2

R2
Ψ1 −

2R2

(R3 + C3)
4
3

Ψ2 +
2

R2b2v
Ψ̃1 −

2R2b2v

(R3 + C3)
4
3

Ψ̃2 , (5.81b)

σϕϕ(R, t) =
1

sin2 Θ

ñ
− p

(R3 + C3)
2
3

+
2

R2
Ψ1 −

2R2

(R3 + C3)
4
3

Ψ2 +
2

R2b2v
Ψ̃1 −

2R2b2v

(R3 + C3)
4
3

Ψ̃2

ô
, (5.81c)
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where p = p(R, t) is the Lagrange multiplier enforcing incompressibility, i.e., J = 1 . The only non-trivial
equilibrium is

σrr,r +
2

r
σrr − rσθθ − r sin2 θ σϕϕ = 0. (5.82)

Or

σrr,R = −r′
ï
2

r
σrr − 2rσθθ

ò
. (5.83)

Thus, recalling that the inner boundary is under a time-dependent pressure pi(t) , i.e., σ
rr(R1, t) = −pi(t) , we

find

σrr(R, t) = −pi(t) +
∫ R

R1

f(ξ, t) dξ , (5.84)

where

f(R, t) = −r′
ï
2

r
σrr − 2rσθθ

ò
=

4C3
(
2R3 + C3

)
(R3 + C3)

7
3

Ψ1 +
4C3

(
2R3 + C3

)
R2 (R3 + C3)

5
3

Ψ2

+
4
î
a3v
(
R3 + C3

)2 −R6
ó

a2v (R
3 + C3)

7
3

Ψ̃1 +
4
î
a3v
(
R3 + C3

)2 −R6
ó

avR2 (R3 + C3)
5
3

Ψ̃2 .

(5.85)

From (5.81a) and (5.84), the pressure field is calculated as

p(R, t) = pi(t)−
∫ R

R1

f(ξ, t) dξ +
2R4

(R3 + C3)
4
3

Ψ1 −
2
(
R3 + C3

) 4
3

R4
Ψ2

+
2R4

a2v (R
3 + C3)

4
3

Ψ̃1 −
2a2v

(
R3 + C3

) 4
3

R4
Ψ̃2 .

(5.86)

We assume that the outer boundary is traction-free, i.e., σrr(R2, t) = 0 . Thus∫ R2

R1

f(ξ, t) dξ = pi(t) . (5.87)

At this point, the unknown fields of the problem are C(t) and av(R, t) . The boundary condition at R2 above
needs to be supplemented by the kinetic equation to solve the problem herein.

Kinetic equation. Assuming the quadratic dissipation potential introduced in §5.1, the kinetic equation—following
(5.11)—reads as the following system of equations

ȧv

ï
(η1 + η2 + η3)av −

η1√
av

ò
− 2R4Ψ̃1

(C3 +R3)
4
3 a2v

− 4R2Ψ̃2

(C3 +R3)
2
3 av

= q , (5.88a)

ȧv

Å
η1√
av

− 2η1 + η2 + η3
2a2v

ã
− 2Ψ̃2

(
C3 +R3

) 4
3 a2v

R4
− 2Ψ̃1

(
C3 +R3

) 2
3 av

R2
− 2R2Ψ̃2

(C3 +R3)
2
3 av

= q , (5.88b)

where we recall that q = q(R, t) is the Lagrange multiplier corresponding to viscous incompressibility, i.e.,
v

J = 1 .
We eliminate q from (5.88) and end up with a single ordinary differential equation for av as the kinetic equation:ï

2η1

(
a

3
2
v − 1

)2
+ (η2 + η3)

(
2a3v + 1

)ò
ȧv +

4
î
a3v
(
R3 + C3

)2 −R6
ó

R2 (R3 + C3)
4
3

Ψ̃1 +
4
î
a4v
(
R3 + C3

)2 −R6av
ó

R4 (R3 + C3)
2
3

Ψ̃2 = 0 .

(5.89)

Example 5.3. Let us consider a neo-Hookean viscoelastic solid, i.e., Ψ1 = 1
2µ , Ψ2 = 0 , Ψ̃1 = 1

2µe , and Ψ̃2 = 0 .
In this case, the kinetic equation (5.89) is simplified to readï

2η1

(
a

3
2
v − 1

)2
+ (η2 + η3)

(
2a3v + 1

)ò
ȧv(R, t) + 2µe

(
C3(t) +R3

) 2
3

R2
a3v = 2µe

R4

(C3(t) +R3)
4
3

. (5.90)
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For this model

f(R, t) = 2µ
C3
(
2R3 + C3

)
(R3 + C3)

7
3

+ 2µe

î
a3v
(
R3 + C3

)2 −R6
ó

a2v (R
3 + C3)

7
3

. (5.91)

The boundary condition (5.87) is simplified to read

µ

[
4R2C

3 + 5R4
2

2 (C3 +R3
2)

4
3

− 4R1C
3 + 5R4

1

2 (C3 +R3
1)

4
3

]
+ 2µe

∫ R2

R1

a3v
(
R3 + C3

)2 −R6

a2v (R
3 + C3)

7
3

dR = pi(t) . (5.92)

The following system of ODE-integral equation governs the unknowns av(R, t) and C(t):
39
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3
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2µ
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4R2C

3 + 5R4
2

4 (C3 +R3
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4
3

− 4R1C
3 + 5R4
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4 (C3 +R3
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4
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]
+ 2µe

∫ R2

R1

a3v
(
R3 + C3

)2 −R6

a2v (R
3 + C3)

7
3

dR = pi(t) ,

av(R, 0) = 1 ,

(5.94)

where the inner pressure loading is given by

pi(t) =



pf erf

Å
t

t0

ã
, 0 ≤ t ≤ t1 ,

pf +
pi(t1)

2
erf

Å
t− t1
t0

ã
, t1 ≤ t ≤ t2 ,

pf
2

− pi(t2) erf

Å
t− t2
t0

ã
, t2 ≤ t ≤ tf ,

(5.95)

where t0 is the loading characteristic time, t1 = 25t0 , t2 = 50t0 , tf = 75t0 , and pf is the force at large times
t0 ≪ t < t1 .

Numerical results. Let us consider a thick spherical shell made of a neo-Hookean viscoelastic solid such that
µe = 1

2µ , with a dissipation potential of the form (5.6) such that η1 = η2 = 1
2η3 , and subject it to the inner

pressure pi(t) (5.95) with pf = 0.25µ at R1 = 0.75R2 . In this example, an explicit finite difference scheme has
been used to numerically solve the governing equations.

We numerically solve the governing Eq. (5.94) assuming different characteristic times t0 , respectively smaller,
equal, and larger than the characteristic time of the viscoelastic shell. In Fig. 8, we show the profile of the inner
pressure loading pi(t) and the resulting evolution of the kinematic quantities av , bv , ae , be , and r at R = R2 ,
as well as the non-zero physical stress components at R = Rm = 1

2 (R1+R2) . As pressure is applied on the inner
wall of the spherical shell, we observe that in each of the three loading then unloading stages, the thick shell
experiences creep as its outer radius first experiences a fast elastic response followed by a slow deformation even
as the inner pressure reaches a constant steady state. However, the elastic deformation gradient experiences a
strain relaxation as its physical components first elastically increase at a fast rate and then slowly relax into

their initial unloaded state as the loading reaches a constant steady state, i.e.,
ê

F = I , as previously discussed in
Remark 3.4. We also see that the viscous deformation gradient experiences a phenomenon akin to creep which
is in accordance with Remark 3.4 since its physical components tend to match those of the total deformation

gradient as the loading reaches a constant steady state—âv(R2, t) approaches F
r
R(R2, t) =

R2
2

r2(R2,t)
and b̂v(R2, t)

approaches F θΘ(R2, t) =
r(R2,t)
R2

so that
v̂

F = F̂ at large times in each of the three loading stages.

39Assuming that av(R, 0) = 1 , the integral equation at t = 0 is simplified to read

(µ+ µe)

 4R2C3 + 5R4
2

4
(
C3 +R3

2

) 4
3

−
4R1C3 + 5R4

1

4
(
C3 +R3

1

) 4
3

 = 0 , (5.93)

which implies that C(0) = 0 . Thus, only one initial condition is needed.
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Figure 8: Numerical results for the time evolution of strain and stress state of an isotropic neo-Hookean viscoelastic thick shell
of outer radius R2 and inner radius R1 = 0.75R2 subject to pressure-control loading pi(t) (5.95) at its inner wall with different
characteristic times t0 versus the viscoelastic dissipation characteristic time τ = η1

µ
of the system.
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6 Conclusions

In this paper, we first revisited the multiplicative decomposition of the deformation gradient F =
e

F
v

F in nonlinear
viscoelasticity from a geometric point of view. We showed, based on invariance and physical arguments, that the
viscous deformation gradient has to be a material tensor while the elastic deformation gradient is a two-point
tensor. We assumed an additive split of the free energy density into equilibrium and non-equilibrium parts.
The equilibrium free energy depends on the total deformation gradient, while the non-equilibrium part depends
only on the elastic deformation gradient. We also assumed the existence of a dissipation potential that depends
on the total deformation gradient, the viscous deformation gradient, and its rate, and that it is convex in the
rate of the viscous deformation gradient. It was concluded that there is a subtle but crucial difference between
anelasticity and viscoelasticity; the intermediate configuration is stress-free in anelasticity but it is stressed in
viscoelasticity.

We derived the balance laws using a two-potential approach and the Lagrange–d’Alembert principle. More
specifically, the variational principle gives us the balance of linear momentum and a kinetic equation for the
viscous deformation gradient. We also discussed thermodynamics of viscoelasticity. Next, material symmetry
was discussed and it was emphasized that the equilibrium and non-equilibrium free energies and the dissipation
potential are all invariant under the same symmetry group. We derived the representations of the Cauchy
stress in terms of the principal and structural invariants for isotropic, transversely isotropic, orthotropic, and
monoclinic solids. The explicit form of the kinetic equation was also derived for these four classes of solids.

Three examples of universal deformations were studied for both isotropic and transversely isotropic solids.
These were extension and torsion of a solid circular bar, and inflation of a spherical shell. Assuming incompress-
ible solids, the kinematics in each case is reduced to depend on one or two unknown time-dependent functions.
The viscous deformation gradient has one or two unknown functions of a radial coordinate and time. The
governing equations were reduced to an initial-value problem for a coupled system of partial differential and
integral equations. For specific examples of solids, these problems were solved numerically.

In a future communication, a theory of small-on-large viscoelasticity will be formulated, a particular case
of which is linearized viscoelasticity. In another future communication, a nonlinear theory of visco-anelasticity
will be developed in order to study the coupling of anelasticity and viscoelasticity.
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Anisotropic Solids/Comportment Méchanique des Solides Anisotropes, pages 3–26. Springer, 1982.

A. J. M. Spencer. Part III. Theory of Invariants. Continuum Physics, 1:239–353, 1971.

A. J. M. Spencer. Modelling of finite deformations of anisotropic materials. In Large Deformations of Solids:
Physical Basis and Mathematical Modelling, pages 41–52. Springer, 1986.

C. Truesdell. The mechanical foundations of elasticity and fluid dynamics. Journal of Rational Mechanics and
Analysis, 1(1):125?300, 1952.

C. Truesdell. The physical components of vectors and tensors. Zeitschrift für Angewandte Mathematik und
Mechanik, 33(10-11):345–356, 1953.

C. Truesdell. The Elements of Continuum Mechanics. Springer-Verlag, 1966.

K. Valanis. Irreversible Thermodynamics of Continuous Media: Internal Variable Theory. CISM Series. Springer,
1972.

V. Volterra. Sulle equazioni integro-differenziali della theoria dell’elasticita. Atti Reale Accad. naz. Lincei. Rend.
Cl. sci. fis., mat. e natur., 18:295–300, 1909.

C. C. Wang. The principle of fading memory. Archive for Rational Mechanics and Analysis, 18:343–366, 1965.

Z. Wang, A. E. H. Chehade, S. Govindjee, and T. D. Nguyen. A nonlinear viscoelasticity theory for nematic
liquid crystal elastomers. Journal of the Mechanics and Physics of Solids, 163:104829, 2022.

52



A. Wineman. Viscoelastic Solids, pages 81–123. Springer International Publishing, 2020.

A. Yavari. Compatibility equations of nonlinear elasticity for non-simply-connected bodies. Archive for Rational
Mechanics and Analysis, 209:237–253, 2013.

A. Yavari. Universal deformations in inhomogeneous isotropic nonlinear elastic solids. Proceedings of the Royal
Society A, 477(2253):20210547, 2021.

A. Yavari. Universal displacements in inextensible fiber-reinforced linear elastic solids. 2023.

A. Yavari and A. Goriely. The anelastic Ericksen problem: Universal eigenstrains and deformations in com-
pressible isotropic elastic solids. Proceedings of the Royal Society A, 472(2196):20160690, 2016.

A. Yavari and A. Goriely. Universal deformations in anisotropic nonlinear elastic solids. Journal of the Mechanics
and Physics of Solids, 156:104598, 2021.

A. Yavari and A. Goriely. Universality in anisotropic linear anelasticity. Journal of Elasticity, 150(2):241–259,
2022.

A. Yavari and A. Goriely. The universal program of linear elasticity. Mathematics and Mechanics of Solids, 28
(1):251–268, 2023.

A. Yavari and F. Sozio. On the direct and reverse multiplicative decompositions of deformation gradient in
nonlinear anisotropic anelasticity. Journal of the Mechanics and Physics of Solids, 170:105101, 2023.

A. Yavari, J. E. Marsden, and M. Ortiz. On spatial and material covariant balance laws in elasticity. Journal
of Mathematical Physics, 47:042903, 2006.

A. Yavari, A. Ozakin, and S. Sadik. Nonlinear elasticity in a deforming ambient space. Journal of Nonlinear
Science, 26:1651–1692, 2016.

A. Yavari, C. Goodbrake, and A. Goriely. Universal displacements in linear elasticity. Journal of the Mechanics
and Physics of Solids, 135:103782, 2020.

C. M. Zener. Elasticity and Anelasticity of Metals. University of Chicago Press, 1948.

Q. S. Zheng. Theory of representations for tensor functions. Applied Mechanics Reviews, 47(11):545–587, 1994.

Q.-S. Zheng and A. J. M. Spencer. Tensors which characterize anisotropies. International Journal of Engineering
Science, 31(5):679–693, 1993.

H. Ziegler. An attempt to generalize Onsager’s principle, and its significance for rheological problems. Zeitschrift
für angewandte Mathematik und Physik, 9(5-6):748–763, 1958.

H. Ziegler and C. Wehrli. The derivation of constitutive relations from the free energy and the dissipation
function. In Advances in applied mechanics, volume 25, pages 183–238. Elsevier, 1987.

A Variations for the Lagrange-d’Alembert Principle

The variation of the velocity vector, δV , is computed as

δV = Dg
ϵVϵ|ϵ=0= Dg

ϵ

Å
∂φϵ(X, t)

∂t

ã∣∣∣∣
ϵ=0
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t
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ϵ=0

= Dg
t δφ , (A.1)

where Dg
ϵ denotes the covariant derivative along the curve ϵ 7→ φt,ϵ(X) for fixed t and X , Dg

t denotes the
covariant derivative along the curve t 7→ φt,ϵ(X) for fixed ϵ and X , and use was made of the symmetry lemma
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for covariant derivatives [Nishikawa, 2002]: Dg
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∂
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Following (??), one may see that δφt0 = δφt1 = 0 . From (3.2), one finds that ∂L̂ /∂V = ρogV and
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The variation of the Cauchy-Green deformation tensor, δC♭ , is computed as
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where L denotes the total Lie derivative operator41 and use was made of the compatibility of the Levi-Civita
connection to write Lδφg = g(∇gδφ) + (∇gδφ)⋆g . It follows that∫ t1
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(A.5)

where (φ∗∇g)δφ = (∇gδφ)F , Div denotes the material Levi-Civita divergence operator, and use was made of
Stokes’ theorem with N being the G-unit normal to ∂B .

The variation of the elastic Cauchy-Green deformation tensor, δ
e

C , is calculated as
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(A.6)

40Note that Dg
t g = ∇g

Vg = 0 per compatibility of the Levi-Civita connection ∇g .
41Note that in terms of the autonomous Lie derivative L , one has Lδφ = ∂

∂ϵ
+ Lδφ
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Isolating the first term, one may write∫ t1
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Therefore, it follows from (A.7) and (A.8) that∫ t1
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The variation of the material metric, δG , is identically zero since the material metric G remains unaltered

by the one-parameter family ϵ 7→ (φϵ,
v

Fϵ):
δG = 0 . (A.10)

The variation of the spatial metric, δg , is also identically zero following from the compatibility of the Levi-Civita
connection ∇g :

δg = Dg
ϵ (g ◦ φϵ) = δφ∇gg = 0 . (A.11)
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The variation of the Jacobian of the total deformation, δJ , reads
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The variation of the Jacobian of the viscous contribution to the deformation, δ
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J , reads
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And it follows that ∫ t1
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B Derivatives of the principal invariants

Suppose f(C♭) is a scalar-valued functional. For an arbitrary second-order covariant tensor H , which has the
coordinate representation H = HAB dX

A ⊗ dXB , one writes

f(C♭ + ϵH) = f(C♭) +
∂f
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:H ϵ+ o(ϵ) . (B.1)

Note that I1 = trG C♭ = C♭ :G = CABG
AB = CAA . This implies that

∂I1
∂C♭

= G♯ . (B.2)
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For I3 = detC , note that
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trC−1 . (B.6)

The second term on the right-hand side is calculated as

(C+ ϵH)
−1

=
[
C
(
I+ ϵC−1H

)]−1
=
(
I+ ϵC−1H

)−1
C−1 . (B.7)

Note that for a small enough ϵ , one has(
I+ ϵC−1H

)−1
=
[
I−

(
−ϵC−1H

)]−1
= I+

(
−ϵC−1H

)
+
(
−ϵC−1H

)2
+ o(ϵ2)

= I− ϵ
(
C−1H

)
+ ϵ2

(
C−1H

)2
+ o(ϵ2) .

(B.8)

Thus
(C+ ϵH)

−1
= C−1 − ϵ

(
C−1HC−1

)
+ ϵ2

(
C−1H

)2
C−1 + o(ϵ2) . (B.9)

This implies that

tr (C+ ϵH)
−1

= trC−1 − ϵ tr
(
C−1HC−1

)
+ ϵ2 tr

î(
C−1H

)2
C−1
ó
+ o(ϵ2) . (B.10)

Note that

tr
(
C−1HC−1

)
= (C−1)AB HBD (C−1)DA = (C−1)DA (C−1)AB HBD = (C−2)DB HBD = C−2 : H . (B.11)

Therefore
∂

∂C
trC−1 = C−2 . (B.12)

Finally
∂I2
∂C

= I2 C
−1 + I3 C

−2 ,
∂I2
∂C♭

= I2 (C
−1)−♯ + I3 (C

−2)♯ = I2 C
−♯ + I3 C

−2♯ . (B.13)

Similarly,

∂
e

I1

∂
e

C♭
= G♯ ,

∂
e

I2

∂
e

C♭
=

e

I2
e

C−♯ −
e

I3
e

C−2♯ ,
∂

e

I3

∂
e

C♭
=

e

I3
e

C−♯ . (B.14)
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