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We consider gradient flows of surface energies which depend on the surface by a parameterization
and on a tangential tensor field. The flow allows for dissipation by evolving the parameterization and
the tensor field simultaneously. This requires the choice of a notation for independence. We introduce
different gauges of surface independence and show their consequences for the evolution. In order to
guarantee a decrease in energy, the gauge of surface independence and the time derivative have to be
chosen consistently. We demonstrate the results for a surface Frank-Oseen-Hilfrich energy.

1. Introduction

Gradient flows are evolutionary systems that decrease energy through a dissipation mechanism. Such
systems are common in physics and widely explored in mathematics [5]. In this work, we consider
classical Hilbert spaces, the 𝐿2-norm as a dissipation mechanism, and surface energies 𝔘[𝑿, 𝒒 [𝑿]] that
depend on a surface S through a parameterization 𝑿 and a tangential n-tensor field 𝒒 [𝑿] ∈ T𝑛S—see
section 2 for definitions. The tangential n-tensor field 𝒒 [𝑿] is defined with respect to the frame in its
image space, which introduces a dependency on the parameterization 𝑿. 𝐿2-gradient flows of such
surface energies, which allow for dissipation by evolving 𝑿 and 𝒒 [𝑿], simultaneously, are given by:

(𝑽 [𝑿],𝔇𝔱𝒒 [𝑿]) = −𝜆∇L2𝔘, (1)

Here, 𝑽 denotes the velocity of the surface S, and 𝔇𝔱𝒒 [𝑿] denotes an observer-invariant
instantaneous time derivative of the n-tensor field 𝒒 [𝑿], see [41]. This work is concerned with
providing a precise mathematical definition for the 𝐿2-gradient on the right-hand side of (1). The
delicate issue is the requirement of mutual independence of 𝑿 and 𝒒 [𝑿]:1 What does this actually
mean? When is a tensor field independent of its underlying spatial domain? We investigate these
issues for variations of the first kind and reveal consequences for such L2-gradient flows, e. g., the

1 Without any dependency on 𝒒 [𝑿 ], e. g., for 𝔘 = 𝔘[𝑿 ], the 𝐿2-gradient flow (1) comprises the first variation of 𝔘 w. r. t. 𝑿 ,
which could be seen as the shape derivative in its strong form, as discussed in [12, 19, 23].
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requirement to choose the notion of independence consistent with the time derivative. Furthermore, we
provide physical cues to choose an appropriate notion of independence or a related time derivative.
While this choice might be intuitive for elastic surfaces [17, 29, 47, 54, 60, 63] and fluidic surfaces
[7, 24, 26, 27, 37, 48, 49, 50, 56, 61], this changes for viscoelastic surfaces [11, 53, 59] and surface
liquid crystals [8, 36, 44, 45, 46, 58]. Crucial examples where the last two are of relevance are biological
surfaces, e. g., the actomyosin cortex, which drives cell surface deformations [38, 51], or on a larger
scale, epithelia tissue, which deforms during morphogenesis [33]. Existing models for such applications
are still in their infancy [1, 11, 20, 33, 35, 55]. However, they all share the feature of choosing the
notions of independence and time derivative in an ad hoc fashion. As these systems are by definition
out of equilibrium, their dynamics matter. We will demonstrate the dependency of the dynamics on the
notion of independence. Any quantitative study of such systems, therefore, requires dealing with these
issues.

The paper is structured as follows: In section 2, we introduce linear deformed surfaces and some
necessary mathematical tools, which cover independence of coordinates and leave the surface as a
degree of freedom. In section 3, we consider deformation derivatives for tensor fields, which leads us
to the concept of the gauge of surface independence. Treating scalar fields in subsection 3.1 is merely a
warm-up exercise to make the reader familiar with the concept of the deformation derivative and surface
independence. Tangential vector- and tensor-fields are treated in subsection 3.2 and 3.3. For instance,
we see that the variation of an energy depending on the contravariant proxy of a tensor field—which
is assumed to be independent of the surface—leads to a different result than the same variation for the
same energy but with a covariant proxy assumed to be independent. It cannot be due to the covariant
or contravariant frame, since the calculus is invariant w. r. t. frames, i. e., musical isomorphisms. It must
be, then, because of the assumption of independence instead. We elaborate on this discrepancy for
tangential vector fields in subsection 3.2, introduce four different gauges of surface independence, and
relate them mutually. That includes some useful identities for calculating surface variations. We also
show the influence on the L2-gradient out of an equilibrium state, which, in turn, does have an impact
on the L2-gradient flow. In section 3.3, we extend our results to 2-tensor fields, thus providing the
reader with a roadmap for further extensions to 𝑛-tensor fields. We illustrate the difference between the
various gauges of surface independence in an example in section 4, where the L2-gradient flow for a
special case of a surface Frank-Oseen-Helfrich energy is solved numerically under all gauges of surface
independence. Finally, we draw conclusions in section 5.

2. Notations and Mathematical Preliminaries

2.1. Surfaces and Linear Deformations

For our purposes, a surface is a 2-dimensional Riemannian manifold (S, 𝒈) smoothly embededed in the
3-dimensional Euclidean space R3 by a smooth parameterization

𝑿 =


𝑋1

𝑋2

𝑋3

 : U → R3 : (𝑦1, 𝑦2) ↦→ 𝑿 (𝑦1, 𝑦2) ∈ S , (2)

where U ⊂ R2 is an open set. For simplicity, we assume that S can be realised by a single
parameterization 𝑿, i. e., 𝑿 (U) = S. The ensuing results may be extended to the more general case
by using an open covering of S. Since 𝑿 determines S, the parameterization may be regarded as an
independant variable describing the dependance on the surface itself. This has the advantage that 𝑿 is
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FIG. 1. Schematic of parameterization and deformation: U ⊂ R2 is the domain (left) of the parameterization 𝑿 , resp. 𝑿 + 𝜀𝑾 ,
which maps to the surface S ⊂ R3 (lower right), resp. S𝜀𝑾 ⊂ R3 (upper right). The surface S is linearly deformed by 𝜀 > 0
along the direction of the field 𝑾 ∈ TR3 |S .

defined in the embedding space, which bears vector space structure where one may work with vector
calculus.

Field quantities may be given w. r. t. the local parameter space U. A vector field 𝑾 ∈ TR3 |S may
hence be given by

𝑾 =


𝑊1

𝑊2

𝑊3

 : U → R3 : (𝑦1, 𝑦2) ↦→𝑾 (𝑦1, 𝑦2) ∈ T𝑿 (𝑦1 ,𝑦2 )R
3 ≡ R3 ,

which trivially fulfills the restriction to S. Let 𝜀 > 0 be a small parameter and assume the local Euclidean
norm of 𝑾 to be finite, so that 𝑿+𝜀𝑾 provides a parameterization for another surface S𝜀𝑾 . The surface
S𝜀𝑾 is hence a finite deformation of the surface S in the direction of 𝑾 ∈ TR3 |S , see figure 1. Even
though 𝑾 is given on the undeformed surface S, it can be defined independently of the parameterization
𝑿 and hence need not bear the functional argument 𝑿.

Note that we could also consider higher order deformation 𝑿 + 𝜀𝑾 + O(𝜀2). However, for the
purposes of this work, linearised deformations would suffice.

Remark 1 Note that our formulation is parametrization-invariant. Indeed, if we choose two
parametrizations: 𝑿̃ : Ũ → S and 𝑿 : U → S and let 𝜙 : Ũ → U the transition map between both
parameter spaces, such that 𝑿̃ = 𝑿 ◦ 𝜙. The deformation direction 𝑾 =𝑊 𝐴𝒆𝐴 = 𝑾̃ = 𝑊̃ 𝐴𝒆𝐴 ∈ TR3 |S
is given w. r. t. both parameter spaces, i. e., 𝑾 (𝑦1, 𝑦2) ∈ T𝑿 (𝑦1 ,𝑦2 )R

3 and 𝑾̃ ( 𝑦̃1, 𝑦̃2) ∈ T 𝑿̃ ( 𝑦̃1 , 𝑦̃2 )R
3 such

that𝑊 𝐴 = 𝑊̃ 𝐴 ◦𝜙. In fact, the parametrization dependence is merely a proxy for surface dependence.

2.2. Notations

In this manuscript, lowercase Latin indices {𝑖, 𝑗 , 𝑘, . . .} are used for the coordinates 𝑦1 and 𝑦2 defined
in the domain U ⊂ R2 of the parameterization 𝑿; uppercase Latin indices {𝐼, 𝐽,𝐾, . . .} are used for
the Cartesian coordinates of R3. Moreover, Einstein’s summation convention is adopted throughout.
Arguments in square brackets indicate total functional dependencies. For instance, the covariant proxy
components of the metric tensor on S are given by 𝑔𝑖 𝑗 [𝑿] = 𝛿𝐼 𝐽 (𝜕𝑖𝑋 𝐼 ) (𝜕 𝑗𝑋 𝐽 ), where 𝛿𝐼 𝐽 denotes the
Kronecker delta symbol and 𝜕𝑖 := 𝜕

𝜕𝑦𝑖
denotes partial differentiation with respect to 𝑦𝑖 .

We write 𝒒 ∈ T𝑛S as a shorthand for 𝒒 being a tangential 𝑛-tensor field on S, i. e., for (𝑦1, 𝑦2) ∈ U
we have 𝒒(𝑦1, 𝑦2) ∈ T𝑛

𝑿 (𝑦1 ,𝑦2 )S. Similarly, 𝑸 ∈ T𝑛R3 |S is shorthand for 𝑸 being a 𝑛-tensor field on
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S—with values in R3𝑛 indeed. Note that T𝑛S is a linear subbundle of T𝑛R3 |S , i. e., T𝑛
𝑿 (𝑦1 ,𝑦2 )S ≤

T𝑛
𝑿 (𝑦1 ,𝑦2 )R

3 for all (𝑦1, 𝑦2) ∈ U, where the equality only holds for 𝑛 = 0. For 𝑛 = 1, we omit the order

index, i. e., T := T1. To illustrate local vector subspace structures, we use ≤, or <. We do not distinguish
between covariant and contravariant tensor fields in index-free notations, since, for a given metric, they
are equal up to isomorphism by the musical operators (♭, ♯). Therefore, in writing T𝑛S, we combine the
covariant and contravariant tensor orders into a single superscript 𝑛.

We use bold symbols for 𝑛-tensor fields, with 𝑛 > 0. For instance, we write 𝒒 = 𝑞𝑖𝜕𝑖𝑿 ∈ TS with
contravariant proxy field (𝑞1, 𝑞2) ∈ (T0S)2 in the coordinate frame {𝜕𝑖𝑿}𝑖 . However, scalar fields
(𝑛 = 0) are not written in bold symbols. Occasionally, we use a Cartesian frame {𝒆𝐼 } or the so-called
thin film frame {𝜕1𝑿, 𝜕2𝑿, 𝝂[𝑿]} restricted to the surface S, with normal field 𝝂[𝑿]⊥TS.

2.3. Inner Products

For inner products, we use angle brackets and mark them by their domain, e. g., ⟨𝒒, 𝒓⟩TS := 𝑔𝑖 𝑗 [𝑿]𝑞𝑖𝑟 𝑗
for 𝒓, 𝒒 ∈ TS; ⟨𝑸,𝑹⟩TR3 |S := 𝛿𝐼 𝐽𝑄𝐼𝑅𝐽 for 𝑸,𝑹 ∈ TR3 |S; ⟨𝒒, 𝒓⟩T2S := 𝑔𝑖 𝑗 [𝑿]𝑔𝑘𝑙 [𝑿]𝑞𝑖𝑘𝑟 𝑗𝑙 for 𝒓, 𝒒 ∈
T2S; ⟨𝑸,𝑹⟩T2R3 |S := 𝛿𝐼 𝐽𝛿𝐾𝐿𝑄𝐼𝐾𝑅𝐽𝐿 for 𝑸,𝑹 ∈ T2R3 |S . Since the metric tensor 𝒈 is derived from
the parameterization 𝑿, it therefore trivially gives an isometric embedding. The local inner products
⟨·, ·⟩T𝑛S and ⟨·, ·⟩T𝑛R3 |S are equal on the subbundle T𝑛S ≤ T𝑛R3 |S , i. e., ⟨𝒒, 𝒓⟩TS = ⟨𝒒, 𝒓⟩TR3 |S for 𝒓, 𝒒 ∈
TS. The global inner product is defined as an L2-product derived from the local one

⟨𝑸,𝑹⟩L2 (T) :=
∫
S
⟨𝑸,𝑹⟩T 𝜇[𝑿] =

∫
U
⟨𝑸,𝑹⟩T

√︁
|𝒈[𝑿] |𝑑𝑦1∧𝑑𝑦2

for T = T𝑛S (resp. = T𝑛R3 |S) and 𝑸,𝑹 ∈ T𝑛S (resp. ∈ T𝑛R3 |S) where |𝒈[𝑿] | is the determinant
of the metric 𝒈[𝑿] and 𝜇[𝑿] the surface area form, i. e., the 2-dimensional volume form.
All norms are derived from their associated inner products, i. e., ∥ · ∥2

T := ⟨·, ·⟩T for T ∈
{T𝑛S,T𝑛R3 |S ,L2(T𝑛S),L2(T𝑛R3 |S)}.

2.4. Geometric Quantities

The covariant proxy of the metric tensor 𝒈, also known as the first fundamental form, is given by
𝑔𝑖 𝑗 [𝑿] =

〈
𝜕𝑖𝑿, 𝜕 𝑗𝑿

〉
TS ∈ T0S. The normal field 𝝂[𝑿] ∈ TR3 |S can be calculated by

√︁
|𝒈[𝑿] |𝝂[𝑿] = 𝜕1𝑿 × 𝜕2𝑿 = 𝜖 𝐼𝐽𝐾 𝜕1𝑋

𝐽𝜕2𝑋
𝐾 𝒆𝐼

where {𝜖 𝐼
𝐽𝐾

} is the 3-dimensional Levi-Civita symbol. Using the 2-dimensional Levi-Civita symbols
{𝜖𝑖 𝑗 }, we define a surface Levi-Civita tensor 𝑬 [𝑿] ∈ T2S by its covariant proxy field components
𝐸𝑖 𝑗 [𝑿] :=

√︁
|𝒈[𝑿] |𝜖𝑖 𝑗 .2 As a bilinear map TS ×TS → R, this tensor field equals the differential 2-

form 𝜇[𝑿]; and as a linear map T1S → T1S of differential 1-forms, it equals the Hodge-star operator.
There is a relation between the Levi-Civita tensor field and theR3-cross product: 𝒒× 𝒓 = (𝒒𝑬 [𝑿]𝒓)𝝂[𝑿]
for all 𝒒, 𝒓 ∈ TS.

2 Note that even though the Levi-Civita symbol { 𝜖𝑖 𝑗 } does not define a tensor, 𝑬 [𝑿 ] is a tensor indeed.
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The covariant proxy components of the second fundamental form are given by

𝐼𝐼𝑖 𝑗 [𝑿] :=
〈
𝜕𝑖𝜕 𝑗𝑿, 𝝂[𝑿]

〉
TR3 |S = −

〈
𝜕𝑖𝑿, 𝜕 𝑗𝝂[𝑿]

〉
TS . (3)

The associated 2-tensor field 𝑰𝑰[𝑿] ∈ T2S is symmetric; and as a linear map TS→ TS, it is also known
as the shape-operator. We use these terminologies interchangeably, since they are equal up to musical
isomorphisms. Two scalar quantities can be derived from the second fundamental form: the mean and
the Gaussian curvatures H[𝑿],K[𝑿] ∈ T0S, resp.they are defined as follows

H[𝑿] := Tr 𝑰𝑰[𝑿] = 𝐼𝐼 𝑖𝑖 [𝑿] , K[𝑿] := |{𝐼𝐼 𝑖𝑗 }| =
|{𝐼𝐼𝑖 𝑗 }|
|𝒈 | ,

where the determinant is given for the associated proxy matrix.

2.5. Tangential Projection

Since T𝑛S is a subbundle of T𝑛R3 |S , an orthogonal projection ΠT𝑛S : T𝑛R3 |S → T𝑛S may be uniquely
defined as follows

ΠT𝑛S𝑸 =𝑄𝐽1...𝐽𝑛

(
𝑛∏
𝛼=1

(𝛿𝐼𝛼
𝐽𝛼

− 𝜈𝐼𝛼 [𝑿]𝜈𝐽𝛼 [𝑿])
)

𝑛⊗
𝛼=1

𝒆𝐼𝛼

=

〈
𝑸,

𝑛⊗
𝛼=1

𝜕𝑖𝛼𝑿

〉
T𝑛R3 |S

(
𝑛∏
𝛼=1

𝑔𝑖𝛼 𝑗𝛼 [𝑿]
)

𝑛⊗
𝛼=1

𝜕 𝑗𝛼𝑿

for all 𝑸 ∈ T𝑛R3 |S . The expression in the most inner brackets of the first row defines the symmetric
tangential tensor field 𝚷S := (𝛿𝐼 𝐽 − 𝜈𝐼 [𝑿]𝜈𝐽 [𝑿])𝒆𝐼 ⊗ 𝒆𝐽 ∈ T2S. Note that ΠT2S𝑸 = 𝚷S𝑸𝚷S for all
𝑸 ∈ T2S. The restriction to TS of the tensor field 𝚷S also describes the tangential field identity map
IdTS : TS → TS, since [𝚷S |TS]𝑖𝑗 = 𝛿𝑖𝑗 in local coordinates. Therefore, we write also IdTS = 𝚷S
synonymously in appropriate situations.

The space of symmetric and trace-free tangential 2-tensors Q2S is a subbundle of T2S, and the
associated orthogonal projection ΠQ2S : T2S → Q2S is given by ΠQ2S 𝒒 := 1

2
(
𝒒 + 𝒒𝑇 − (Tr𝒒) IdTS

)
and is surjective.

2.6. Spatial Derivatives

We use the covariant derivative ∇ : T𝑛S → T𝑛+1S defined by

[∇𝒒]𝑖1...𝑖𝑛𝑘 := 𝑞𝑖1...𝑖𝑛 |𝑘 := 𝜕𝑘𝑞𝑖1...𝑖𝑛 −
𝑛∑︁
𝛼=1

Γ
𝑗

𝑘𝑖𝛼
[𝑿]𝑞𝑖1...𝑖𝛼−1 𝑗𝑖𝛼+1...𝑖𝑛 (4)

on fully covariant proxy components, where Γ
𝑗

𝑘𝑖
[𝑿] = 𝑔 𝑗𝑙 [𝑿]Γ𝑘𝑖𝑙 [𝑿] are the Christoffel symbols of

second kind and Γ𝑖 𝑗𝑘 [𝑿] of first kind given by

Γ𝑖 𝑗𝑘 [𝑿] =
1
2

(
𝜕𝑖𝑔 𝑗𝑘 [𝑿] + 𝜕 𝑗𝑔𝑖𝑘 [𝑿] − 𝜕𝑘𝑔𝑖 𝑗 [𝑿]

)
=

〈
𝜕𝑖𝜕 𝑗𝑿, 𝜕𝑘𝑿

〉
TR3 |S . (5)

Note that for raising an index in the left-hand-side in (4), the sign and index order of the corresponding
Christoffel symbol changes in the right-hand-side by virtue of metric compatibility, i. e., 𝜕𝑘𝑔𝑖 𝑗 [𝑿] =
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Γ𝑘𝑖 𝑗 [𝑿] +Γ𝑘 𝑗𝑖 [𝑿]. For instance, the covariant derivative of a tangential vector field 𝒒 ∈ TS reads

𝑞𝑖 |𝑘 := 𝑔𝑖 𝑗 [𝑿]𝑞 𝑗 |𝑘 = 𝑔𝑖 𝑗 [𝑿]
(
𝜕𝑘 (𝑔 𝑗𝑙 [𝑿]𝑞𝑙) −Γ𝑙𝑘 𝑗 [𝑿]𝑞𝑙

)
= 𝛿𝑖𝑙𝜕𝑘𝑞

𝑙 +𝑔𝑖 𝑗 [𝑿]𝑞𝑙
(
Γ𝑘 𝑗𝑙 [𝑿] +Γ𝑘𝑙 𝑗 [𝑿]

)
−Γ𝑙𝑘 𝑗 [𝑿]𝑞𝑙 = 𝜕𝑘𝑞

𝑖 +Γ𝑖𝑘 𝑗 [𝑿]𝑞
𝑗 .

We identify the usual covariant R3-derivative restricted to the surface by

∇R3 := 𝛿𝐼𝐾𝜕𝐼 (·) |S ⊗ 𝒆𝐾 : T𝑛R3 |S → T𝑛+1R3 |S .

Due to the lack of information—and arbitrariness—along the normal direction3, this derivative is
undetermined. But we can define the unique surface and tangential derivatives, resp., from it by

∇S := ∇R3 ·𝚷S : T𝑛R3 |S → T𝑛R3 |S ⊗TS , (6)

∇T𝑛+1S := ΠT𝑛+1S ◦∇R3 : T𝑛R3 |S → T𝑛+1S . (7)

Note that ∇T𝑛+1S |T𝑛S = ∇ while ∀𝒒 ∈ TS: ∇S𝒒 = ∇T2S𝒒 + 𝝂 ⊗ 𝑰𝑰𝒒.
The curl-operator rot : TS → T0S on tangential vector fields 𝒒 ∈ TS is given by

rot𝒒 := − ⟨∇𝒒,𝑬 [𝑿]⟩T2S ,

and the relation to the antisymmetric part of the covariant derivative is 1
2 (∇𝒒− (∇𝒒)𝑇 ) = − rot𝒒

2 𝑬 [𝑿].
The covariant divergence div : T𝑛S → T𝑛−1S is defined as the L2-adjoint ∇† of ∇ and it is given in

components by contracting the last two indices of its image

div𝒒 := −∇†𝒒 = Tr(𝑛,𝑛+1) ∇𝒒 = 𝑞
𝑖1...𝑖𝑛−1𝑘

|𝑘

𝑛−1⊗
𝛼=1

𝜕𝑖𝛼𝑿 ,

for all 𝒒 ∈ T𝑛S. The L2-adjoint ∇†
T2S of ∇T2S defines the tangential divergence

divT2S := −∇†
T2S = div(·) + ⟨𝑰𝑰[𝑿], ·⟩T2S 𝝂[𝑿] : T2S → TR3 |S . (8)

For all 𝝈 ∈ T2S and 𝜼 ∈ TS, the L2-adjoint ∇†
S of ∇S defines the surface divergence

divS (𝝈 + 𝝂[𝑿] ⊗ 𝜼) := −∇†
S (𝝈 + 𝝂[𝑿] ⊗ 𝜼) = (Tr(2,3) ◦∇S) (𝝈 + 𝝂[𝑿] ⊗ 𝜼)

= div𝝈− 𝑰𝑰[𝑿]𝜼+ (⟨𝑰𝑰[𝑿],𝝈⟩T2S +div𝜼)𝝂[𝑿] , (9)

where integration by parts in (8) is done w. r. t. ∇ and not ∇R3 , since the global inner product is given by
L2(T2S), resp. L2(TR3 |S ⊗TS). Hence, it follows that divS |T2S = divT2S . Note that divT2S cannot be
achieved through applying the trace on its related gradient, contrarily to the divergences divS and div.

3 Since in T𝑛R3 |S , the tensor fields are only defined on S.
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2.7. Gradient of Vector Fields

We now consider the gradient of vector fields 𝑾 ∈ TR3 |S and distinguish its tangential, symmetric
and antisymmetric parts. In most cases, 𝑾 is used as the deformation direction field. Since 𝑾 is an
R3-quantity, though restricted to S, we start with the R3-gradient ∇R3𝑾 ∈ T2R3 |S w. r. t. the embedding
space. This includes the derivative in normal direction, which is clearly not determined due to the
restriction |S , but we do not need it.

The pure tangential part is 𝑮 [𝑿,𝑾] := ∇T2S𝑾 ∈ T2S, according to definition (7), and its covariant
proxy components yield

𝐺𝑖 𝑗 [𝑿,𝑾] =
〈
∇T2S𝑾, 𝜕𝑖𝑿 ⊗ 𝜕 𝑗𝑿

〉
T2S =

〈
𝜕 𝑗𝑾, 𝜕𝑖𝑿

〉
TR3 |S . (10)

An orthogonal decomposition 𝑾 = 𝒘 [𝑿] +𝑤⊥ [𝑿]𝝂[𝑿] with tangential part 𝒘 [𝑿] ∈ TS and scalar
normal part 𝑤⊥ [𝑿] ∈ T0S results in

𝜕 𝑗𝑾 = (𝜕 𝑗𝑤𝑘 [𝑿])𝜕𝑘𝑿 +𝑤𝑘 [𝑿]𝜕 𝑗𝜕𝑘𝑿 +𝑤⊥ [𝑿]𝜕 𝑗𝝂[𝑿] + (𝜕 𝑗𝑤⊥ [𝑿])𝝂[𝑿] . (11)

Therefore, we obtain by means of (3), (4) and (5), that

𝐺𝑖 𝑗 [𝑿,𝑾] = 𝑔𝑖𝑘 [𝑿]𝜕 𝑗𝑤𝑘 [𝑿] +𝑤𝑘 [𝑿]Γ 𝑗𝑘𝑖 [𝑿] −𝑤⊥ [𝑿] 𝐼𝐼𝑖 𝑗 [𝑿]
= 𝑤𝑖 | 𝑗 [𝑿] −𝑤⊥ [𝑿] 𝐼𝐼𝑖 𝑗 [𝑿] .

The covariant proxy components of the symmetric part 𝑺[𝑿,𝑾] := 1
2 (𝑮 [𝑿] +𝑮𝑇 [𝑿]) ∈ T2S are given

by

𝑆𝑖 𝑗 [𝑿,𝑾] = 1
2

(
𝑤𝑖 | 𝑗 [𝑿] +𝑤 𝑗 |𝑖 [𝑿]

)
−𝑤⊥ [𝑿] 𝐼𝐼𝑖 𝑗 [𝑿] ,

as a consequence. In contrast, the antisymmetric part 𝑨[𝑿,𝑾] := 1
2 (𝑮 [𝑿] −𝑮𝑇 [𝑿]) ∈ T2S becomes

𝐴𝑖 𝑗 [𝑿,𝑾] = 1
2

(
𝑤𝑖 | 𝑗 [𝑿] −𝑤 𝑗 |𝑖 [𝑿]

)
=

rot𝒘 [𝑿]
2

𝐸 𝑗𝑖 [𝑿] ,

and does not depend on normal components given by 𝑤⊥ [𝑿]. In table 1 we give a summary of these
three tangential 2-tensor fields in index-free notations.

From (11), it follows that the normal component of the derivative in tangential direction is given by

⟨∇R3𝑾, 𝝂[𝑿] ⊗ 𝜕𝑖𝑿⟩T2R3 |S = ⟨𝜕𝑖𝑾, 𝝂[𝑿]⟩TR3 |S

= (𝜕𝑖𝑤⊥ [𝑿]) ∥𝝂[𝑿] ∥2
TR3 |S +𝑤

𝑘 [𝑿] ⟨𝜕𝑖𝜕𝑘𝑿, 𝝂[𝑿]⟩TR3 |S

= 𝜕𝑖𝑤⊥ [𝑿] + 𝐼𝐼𝑖𝑘 [𝑿]𝑤𝑘 [𝑿] . (12)

Using (10), the surface derivative (6) of 𝑾 becomes

∇S𝑾 := 𝑮 [𝑿,𝑾] + 𝝂[𝑿] ⊗ 𝒃[𝑿,𝑾] ∈ TR3 |S ⊗TS , (13)

where 𝒃[𝑿,𝑾] := ∇𝑤⊥ [𝑿] + 𝑰𝑰[𝑿]𝒘 [𝑿] ∈ TS . (14)
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covariant surface calculus R3-calculus

𝑮 [𝑿,𝑾] ∇𝒘 [𝑿] −𝑤⊥ [𝑿] 𝑰𝑰[𝑿] ΠT2S (∇R3𝑾)

𝑺[𝑿,𝑾] 1
2
(
∇𝒘 [𝑿] + (∇𝒘 [𝑿])𝑇

)
−𝑤⊥ [𝑿] 𝑰𝑰[𝑿] 1

2 ΠT2S (∇R3𝑾 + (∇R3𝑾)𝑇 )

𝑨[𝑿,𝑾] 1
2
(
∇𝒘 [𝑿] − (∇𝒘 [𝑿])𝑇

)
= − rot𝒘 [𝑿 ]

2 𝑬 [𝑿] 1
2 ΠT2S (∇R3𝑾 − (∇R3𝑾)𝑇 )

TABLE 1 Fully tangential part of ∇R3𝑾 and its orthogonal decomposition
𝑮 [𝑿,𝑾] = 𝑺[𝑿,𝑾] + 𝑨[𝑿,𝑾] ∈ T2S into symmetric part 𝑺[𝑿,𝑾] ∈ T2S and
antisymmetric part 𝑨[𝑿,𝑾] ∈ T2S in terms of R3-calculus w. r. t. the embedding
space (right) and a covariant surface calculus (middle), where 𝑾 = 𝒘 [𝑿] +
𝑤⊥ [𝑿]𝝂[𝑿] ∈ TR3 |S is orthogonally decomposed into tangential field 𝒘 [𝑿] ∈ TS
and scalar normal field 𝑤⊥ [𝑿] ∈ T0S.

We also need the L2-adjoint 𝚿‡ [𝑿] : T2S → TR3 |S of 𝚿 ∈ {𝑮,𝑮𝑇 ,𝑺, 𝑨}, which is implicitly
defined by

∀𝒓 ∈ T2S :
〈
𝚿‡ [𝑿] (𝒓),𝑾

〉
L2 (TR3 |S ) := ⟨𝒓,𝚿[𝑿,𝑾]⟩L2 (T2S) .

Since 𝑮 [𝑿,𝑾] = ∇T2S𝑾, tangential divergence (8) yields

𝑮‡ [𝑿] (𝒓) = −divT2S 𝒓 = −
(
div 𝒓 + ⟨𝒓, 𝑰𝑰[𝑿]⟩T2S 𝝂[𝑿]

)
(𝑮𝑇 )‡ [𝑿] (𝒓) = −divT2S 𝒓𝑇 = −

(
div 𝒓𝑇 + ⟨𝒓, 𝑰𝑰[𝑿]⟩T2S 𝝂[𝑿]

)
𝑺‡ [𝑿] (𝒓) = −divT2S

𝒓 + 𝒓𝑇

2
= −

(
div

𝒓 + 𝒓𝑇

2
+ ⟨𝒓, 𝑰𝑰[𝑿]⟩T2S 𝝂[𝑿]

)
𝑨‡ [𝑿] (𝒓) = −divT2S

𝒓 − 𝒓𝑇

2
= −div

𝒓 − 𝒓𝑇

2
(15)

3. Gauges of Surface Independence, L2-Gradient and Flows

To calculate a consistent L2-gradient flow, it is mandatory to clarify the role of independence between
the degrees of freedom of the underlying system. We quantify the independence of the surface for
tangential tensor fields by various gauges of surface independence. In order to do that, we introduce
a variety of deformation derivatives, which can be seen as local variations of tensor fields w. r. t. the
surface. A gauge of surface independence is fulfilled if and only if the associated deformation derivative
vanishes.

We treat scalar fields in subsection 3.1. Even if the proceeding here seems a bit superfluous, it gives
us the opportunity to introduce basic concepts and to create an awareness of emerging problems in
the course of surface variations. In subsection 3.2, we take a closer look at this for tangential vector
fields. Afterwards, we give a short summary of the results for tangential 2-tensor fields in subsection
3.3. Generalizations to tangential n-tensor fields can be done along the same lines.

In each subsection, we discuss consequences for energy variations, the resulting L2-gradients, and
their flows. Differentiating energies that depend on tensor fields by the underlying spatial space could
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bear some uncertainties. Physical systems are often only defined on a currently given space, possibly
also on a moving space if the system is time-dependent. However, in many energy techniques, more
information about the behavior of energy variation is essential. To calculate global gradients or total
differentials of energies, we have to vary the energy in space arbitrarily and instantaneously, though we
do not know how the energy acts in a small vicinity of the underlying space, since this is not a part of
the prescribed physical system. As we see in each subsection, all uncertainties that arise from arbitrary
spatial variations can be determined by the gauges of surface independence.

3.1. Scalar Fields

Let us consdier a smooth scalar field 𝑓 on the 2-dimensional smooth surface S parameterized by 𝑿:

𝑓 [𝑿] : U → R; (𝑦1, 𝑦2) ↦→ 𝑓 [𝑿] (𝑦1, 𝑦2) ∈ T0
𝑿 (𝑦1 ,𝑦2 )S . (16)

Recall that arguments in squared brackets indicate a total functional dependency. This means that 𝑓
could also depend partially on derivatives of 𝑿. For instantce, covariant proxy components of the metric
tensor yield 𝑔𝑖 𝑗 [𝑿] =

〈
𝜕𝑖𝑿, 𝜕 𝑗𝑿

〉
TR3 |S ∈ T0S. It should be noted that the parameterization 𝑿 remains

only an arbitrary proxy for the surface S. If we consider an alternative parameterization 𝑿̃ : Ũ → S,
accompanied by a transition map 𝜙 : Ũ →U such that 𝑿̃ = 𝑿 ◦ 𝜙, we can define an equivalent scalar
field 𝑓 [ 𝑿̃] ∈ T0S as follows: 𝑓 [ 𝑿̃] ( 𝑦̃1, 𝑦̃2) := ( 𝑓 [ 𝑿̃ ◦ 𝜙−1] ◦ 𝜙) ( 𝑦̃1, 𝑦̃2). This can also be generalized
when the images of both parameterizations overlap to an open subset of the surface.

3.1.1. Gauge of Surface Independence
For any vector field 𝑾 ∈ TR3 |S and a small parameter 𝜀 > 0, 𝑿 +𝜀𝑾 provides a parameterization in R3

for a 𝜀-perturbed S in the 𝑾 direction; and we may define the deformation derivative ð𝑾 𝑓 [𝑿] in the
direction of 𝑾 ∈ TR3 |S :

ð𝑾 𝑓 [𝑿] (𝑦1, 𝑦2) := lim
𝜀→0

𝑓 [𝑿 + 𝜀𝑾] (𝑦1, 𝑦2) − 𝑓 [𝑿] (𝑦1, 𝑦2)
𝜀

∈ T0
𝑿 (𝑦1 ,𝑦2 )S , (17)

in such a way that it is well-defined at all (𝑦1, 𝑦2) ∈ U. As mentioned above, 𝑓 [𝑿] is invariant w. r. t.
the choice of parameterization. The same applies to the deformation derivative. For an alternative
parameterization 𝑿̃ and an equivalent scalar field 𝑓 [ 𝑿̃] ∈ T0S, such that 𝑓 [ 𝑿̃] ( 𝑦̃1, 𝑦̃2) = 𝑓 [𝑿] (𝑦1, 𝑦2)
at every location 𝑿̃ ( 𝑦̃1, 𝑦̃2) = 𝑿 (𝑦1, 𝑦2), is also 𝑓 [ 𝑿̃ + 𝜀𝑾̃] ( 𝑦̃1, 𝑦̃2) = 𝑓 [𝑿 + 𝜀𝑾] (𝑦1, 𝑦2) valid for
an equivalent deformation directions 𝑾̃ ( 𝑦̃1, 𝑦̃2) = 𝑾 (𝑦1, 𝑦2) ∈ T 𝑿̃ ( 𝑦̃1 , 𝑦̃2 )R

3 = T𝑿 (𝑦1 ,𝑦2 )R
3. Therefore,

ð
𝑾̃
𝑓 [ 𝑿̃] ( 𝑦̃1, 𝑦̃2) = ð𝑾 𝑓 [𝑿] (𝑦1, 𝑦2) holds locally and ð

𝑾̃
𝑓 [ 𝑿̃] = (ð

𝑾̃ ◦𝜙−1 𝑓 [ 𝑿̃ ◦ 𝜙−1]) ◦ 𝜙 w. r. t. the

transition map 𝜙 : Ũ → U introduced above. The deformation derivative (17) measures the linear
change of a scalar field w. r. t. a change of the underlying surface.

Definition 1 (Gauge of Surface Independence on Scalar Fields) A scalar field 𝑓 [𝑿] ∈ T0S fulfills
the gauge of surface independence ð 𝑓 = 0, if and only if ð𝑾 𝑓 [𝑿] = 0 is valid everywhere in U for all
𝑾 ∈ TR3 |S .

Using a Taylor expansion at 𝜀 = 0 yields

𝑓 [𝑿 + 𝜀𝑾] (𝑦1, 𝑦2) = 𝑓 [𝑿] (𝑦1, 𝑦2) + 𝜀ð𝑾 𝑓 [𝑿] (𝑦1, 𝑦2) +O(𝜀2) , (18)
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which shows that the gauge ð 𝑓 = 0 is less restrictive for determining 𝑓 [𝑿 + 𝜀𝑾] sufficiently than the
example of pushforward above. Note that ð 𝑓 = 0 does not imply 𝑓 [𝑿] ≡ 0, since every scalar field
𝑓 [𝑿] : (𝑦1, 𝑦2) ↦→ 𝑓 (𝑦1, 𝑦2) ≠ 0 would bear this gauge of surface independence.

In the following, we omit the partial coordinates dependency (𝑦1, 𝑦2) as much as possible in the
notion for field quantities. Unless stated otherwise, field quantities and operators are always defined
pointwise for all (𝑦1, 𝑦2) ∈ U.

The gauge of surface independence is important as part of assumptions which should be forced a
priori if the steepest decent of an energy is of interest w. r. t. scalar fields and the surface. Every scalar
field obeying the gauge ð 𝑓 = 0 can be seen as independent of surface deformations, thus it is a natural
assumption for several variation principles, where the underlying surface is a degree of freedom, rather
than a static background for the physical model. For instance, the proxy field of the metric tensor
generally fails this gauge componentwise, since for 𝑓 [𝑿] = 𝑔𝑖 𝑗 [𝑿], it holds

ð𝑾 𝑔𝑖 𝑗 [𝑿] =
〈
𝜕𝑖𝑾, 𝜕 𝑗𝑿

〉
TR3 |S +

〈
𝜕 𝑗𝑾, 𝜕𝑖𝑿

〉
TR3 |S . (19)

ð𝑾 𝑓 [𝑿] = ð𝑾 𝑔𝑖 𝑗 [𝑿] = 0 is valid only if 𝑾 is the linear direction of a rigid body deformation of
the surface. Therefore, minimizing a pure geometric energy 𝔘 = 𝔘[S[𝑿], {𝑔𝑖 𝑗 [𝑿]}] w. r. t. S[𝑿] and
all 𝑔𝑖 𝑗 [𝑿] simultaneously is not recommended and would possibly give an inappropriate L2-gradient,
which may for instance lead to an overdetermined gradient flow. Moreover, the surface as well as
the metric tensor are even fully determined by the parameterization 𝑿 and therefore fully dependent
variables, hence we could formulate the same energy just as 𝔘 = 𝔘[𝑿].

3.1.2. Energy Variations
For now, we do not assume specific dependencies on 𝑿 for scalar fields and discuss the role of the gauge
of surface independence at the end of this section. Considering an energy 𝔘[𝑿, 𝑓 [𝑿]] depending on
the surface by 𝑿 and a scalar field 𝑓 [𝑿] ∈ T0S, the total and partial variation4 of the energy w. r. t. 𝑿,
evaluated at 𝑿, are respectively given by〈

𝛿𝔘

𝛿𝑿
,𝑾

〉
L2 (TR3 |S )

:= lim
𝜀→0

𝔘[𝑿 + 𝜀𝑾, 𝑓 [𝑿 + 𝜀𝑾]] −𝔘[𝑿, 𝑓 [𝑿]]
𝜀

∈ R ,〈
𝜕𝔘

𝜕𝑿
,𝑾

〉
L2 (TR3 |S )

:= lim
𝜀→0

𝔘[𝑿 + 𝜀𝑾, 𝑓 [𝑿]] −𝔘[𝑿, 𝑓 [𝑿]]
𝜀

∈ R

and the variation w. r. t. 𝑓 by〈
𝛿𝔘

𝛿 𝑓
, 𝑟

〉
L2 (T0S)

:= lim
𝜀→0

𝔘[𝑿, 𝑓 [𝑿] + 𝜀𝑟] −𝔘[𝑿, 𝑓 [𝑿]]
𝜀

∈ R

for all 𝑾 ∈ TR3 |S and 𝑟 ∈ T0S. Taylor expansion (18) and an additional expansion of 𝔘 yields

𝔘[𝑿 + 𝜀𝑾, 𝑓 [𝑿 + 𝜀𝑾]] = 𝔘[𝑿 + 𝜀𝑾, 𝑓 [𝑿]] + 𝜀
〈
𝛿𝔘

𝛿 𝑓
,ð𝑾 𝑓 [𝑿]

〉
L2 (T0S)

+O(𝜀2) .

4 In this work, we distinguish “partial” and “total” derivatives: Total derivatives affect the semantic change of the argument,
whereas partial derivatives are depending on the syntax of their arguments.
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As a consequence we can relate the different variations by〈
𝛿𝔘

𝛿𝑿
,𝑾

〉
L2 (TR3 |S )

=

〈
𝜕𝔘

𝜕𝑿
,𝑾

〉
L2 (TR3 |S )

+
〈
𝛿𝔘

𝛿 𝑓
,ð𝑾 𝑓 [𝑿]

〉
L2 (T0S)

.

Therefore, assuming the gauge ð 𝑓 = 0, the partial and total variation of 𝔘 w. r. t. 𝑿 would be equal, as
one would expect for energies with independent variables.

Remark 2 Note that the attribute “well-defined” is part of the definition of the deformation derivative
(17) and not a conclusion, i. e., 𝑓 [𝑿 + 𝜀𝑾] has to be known sufficiently so that ð𝑾 𝑓 [𝑿] and 𝛿𝔘

𝛿𝑿 can
be seen as adequately defined Gâteaux derivatives. A usual way to archive this is to push 𝑓 [𝑿] forward
w. r. t. the map S→S𝜀𝑾 , e. g., by stipulating 𝑓 [𝑿+𝜀𝑾] (𝑦1, 𝑦2) := 𝑓 [𝑿] (𝑦1, 𝑦2). This way to determine
𝑓 [𝑿 + 𝜀𝑾] can be seen as a sufficient assumption to state that the scalar field is independent of
surface deformations. However, we can also go the other way around and stipulate that the deformation
derivative has to vanish.

3.1.3. L2-Gradient Flow
To formulate a L2-gradient flow, we need independence of the degrees of freedoms 𝑿 and 𝑓 [𝑿], i. e.,
we stipulate the gauge of surface independence ð 𝑓 = 0. In order to describe an observer-invariant rate
for a scalar field 𝑓 [𝑿] we use the material time derivative, given in [41] for instance. We write ¤𝑓 [𝑿] for
this rate. Observer-invariance means that the time-depending observer parameterization does not have
to be the same as the parameterization describing the material as long as both represent the same moving
surface. For more details, see [41]. Eventually, the strong L2-gradient flow of an energy 𝔘 =𝔘[𝑿, 𝑓 [𝑿]]
reads

𝑑

𝑑𝑡
𝑿 = −𝜆 𝛿𝔘

𝛿𝑿
= −𝜆 𝜕𝔘

𝜕𝑿
, ¤𝑓 [𝑿] = −𝜆 𝛿𝔘

𝛿 𝑓
, (20)

with mobility coefficient 𝜆 > 0. The energy is dissipative under this gradient flow, since

𝑑

𝑑𝑡
𝔘 = −𝜆

(



 𝛿𝔘𝛿𝑿 



2

L2 (TR3 |S )
+




𝛿𝔘𝛿 𝑓 



2

L2 (T0S)

)
≤ 0 .

Many examples exist where this is used intuitively without explicitly considering the gauge of surface
independence ð 𝑓 = 0, see section 4.1.

3.2. Tangential Vector Fields

In this section we investigate the impact of surface deformations on tangential vector fields 𝒒 [𝑿] ∈ TS.
Similarly to scalar fields (16), they are defined pointwise by

𝒒 [𝑿] : (𝑦1, 𝑦2) ↦→ 𝒒 [𝑿] (𝑦1, 𝑦2) ∈ T𝑿 (𝑦1 ,𝑦2 )S < T𝑿 (𝑦1 ,𝑦2 )R
3 .

Due to syntactically different, but isomorphic, representation possibilities for tangential vector fields,
there are different natural ways to define the degrees of freedom. Eventually, these differences
subsequently result in varying gauges of surface independence. Two representations for tangential
vector fields 𝒒 [𝑿] ∈ TS are well-known in differential geometry and tensor analysis. One is the
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contravariant proxy vector field {𝑞𝑖 [𝑿]} ∈ (T0S)2, which assembles the vector field 𝒒 [𝑿] w. r. t. a
given frame. We employ 𝒒 [𝑿] = 𝑞𝑖 [𝑿]𝜕𝑖𝑿 in this paper. The other one is the covariant proxy vector
field {𝑞𝑖 [𝑿]} ∈ (T0S)2, which generates the linear map ⟨𝒒 [𝑿], ·⟩TS : TS → T0S dual to 𝒒 [𝑿], where
the dual frame could be derived from the primal one. This means in our case that ⟨𝒒 [𝑿], ·⟩TS =

𝑞𝑖 [𝑿]
〈
𝜕𝑖𝑿, ·

〉
TS with 𝜕𝑖𝑿 := 𝑔𝑖 𝑗 [𝑿]𝜕 𝑗𝑿. Both are isomorphically related by 𝑞𝑖 [𝑿] = 𝑔𝑖 𝑗 [𝑿]𝑞 𝑗 [𝑿],

resp. by 𝑞𝑖 [𝑿] = 𝑔𝑖 𝑗 [𝑿]𝑞 𝑗 [𝑿]. In this context, it is worthwhile to recall 𝑔𝑖 𝑗 [𝑿] =
〈
𝜕𝑖𝑿, 𝜕 𝑗𝑿

〉
TR3 |S

and its proxy matrix field inverse given by 𝑔𝑖𝑘 [𝑿]𝑔𝑘 𝑗 [𝑿] = 𝛿𝑖𝑗 implicitly. Since proxy vector fields
are only the pointwise Cartesian product of scalar fields, we could use the deformation derivative (17)
componentwise and the gauge of surface independence w. r. t. Definition 1 holds also componentwise.
But the resulting gauges ð𝑞𝑖 = 0 and ð𝑞𝑖 = 0 are obviously not the same, since in general the metric
tensor depends on the surface as we have seen in (19). In this section we add two more gauges, name
them, and relate them all to each other. Afterwards, we discuss consequences for energy variations and
L2-gradient flows w. r. t. these gauges.

3.2.1. Gauges of Surface Independence
By recognizing the embedding space, tangential vector fields 𝒒 [𝑿] ∈ TS < TR3 |S lay in a linear sub-
vector bundle of TR3 |S = TS ⊕ (T0S)𝝂[𝑿]. Therefore, every tangential vector field 𝒒 [𝑿] ∈ TS can
be represented in TR3 |S , i. e., it holds 𝒒 [𝑿] = 𝑞𝐼 [𝑿]𝒆𝐼 = 𝑞𝑖 [𝑿]𝜕𝑖𝑿, where 𝒆𝐼 are the Cartesian base
vector fields. The advantage of using a Cartesian frame is that it is constant and defined in the whole
TR3. Hence, also on the deformed surface S𝜀𝑾 the tangential vector field 𝒒 [𝑿+𝜀𝑾] = 𝑞𝐼 [𝑿+𝜀𝑾]𝒆𝐼 ∈
TS𝜀𝑾 is represented with the same base vector fields {𝒆𝐼 }. Since a derivative has to obey the product
rule it is justified to define

ð𝑾 𝒒 [𝑿] = ð𝑾
(
𝑞𝐼 [𝑿]𝒆𝐼

)
:=

(
ð𝑾 𝑞

𝐼 [𝑿]
)
𝒆𝐼

on TS by the deformation derivative (17) for scalar fields. Changing the frame to {𝜕𝑖𝑿} yields

ð𝑾 𝒒 [𝑿] = lim
𝜀→0

𝑞𝐼 [𝑿 + 𝜀𝑾] − 𝑞𝐼 [𝑿]
𝜀

𝒆𝐼

= lim
𝜀→0

𝑞𝑖 [𝑿 + 𝜀𝑾] (𝜕𝑖𝑿 + 𝜀𝜕𝑖𝑾) − 𝑞𝑖 [𝑿]𝜕𝑖𝑿
𝜀

=
(
ð𝑾 𝑞

𝑖 [𝑿]
)
𝜕𝑖𝑿 + 𝑞𝑖 [𝑿]𝜕𝑖𝑾 (21)

=
(
ð𝑾 𝑞

𝑖 [𝑿]
)
𝜕𝑖𝑿 + (∇S𝑾)𝒒 [𝑿] ∈ TR3 |S . (22)

The first summand implies that this deformation derivative is determined by prescribing ð𝑾 𝑞
𝑖 [𝑿],

while the second summand is already determined at the surface by 𝑿, 𝑾 and 𝒒 [𝑿]. By orthogonal
decomposition 𝑾 = 𝒘 [𝑿] +𝑤⊥ [𝑿]𝝂[𝑿] and surface derivative (13) of 𝑾, the normal part of ð𝑾 𝒒 [𝑿]
is 〈

ð𝑾 𝒒 [𝑿], 𝝂[𝑿]
〉

TR3 |S = ∇𝒒 [𝑿 ]𝑤⊥ [𝑿] + 𝒒 [𝑿] 𝑰𝑰[𝑿]𝒘 [𝑿] .

Since this normal part, coming only from the second summand of (22), is fully determined by the
surface, it is justified to use only the tangential part of the deformation derivative given by ð𝑾 𝒒 [𝑿].
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With surface derivative (13) of 𝑾, the covariant proxy field of the tangential part of (22) yields[
ð𝑾 𝒒 [𝑿]

]
𝑖
=

〈
ð𝑾 𝒒 [𝑿], 𝜕𝑖𝑿

〉
TR3 |S = 𝑔𝑖 𝑗 [𝑿]ð𝑾 𝑞

𝑗 [𝑿] +𝐺𝑖 𝑗 [𝑿,𝑾]𝑞 𝑗 [𝑿] ,

where 𝐺𝑖 𝑗 [𝑿,𝑾] = 𝑤𝑖 | 𝑗 [𝑿] −𝑤⊥ [𝑿] 𝐼𝐼𝑖 𝑗 [𝑿] is the tangential derivative of 𝑾, see section 2.7. With
this we define the material deformation derivative ðS𝑾 : TS→TS of tangential vector fields in direction
of 𝑾 ∈ TR3 |S by

ðS𝑾 𝒒 [𝑿] := (ΠTS [𝑿] ◦ð𝑾 )𝒒 [𝑿] = 𝑔 𝑗𝑘 [𝑿]
[
ð𝑾 𝒒 [𝑿]

]
𝑗
𝜕𝑘𝑿

= (ð𝑾 𝑞
𝑘 [𝑿])𝜕𝑘𝑿 +𝑮 [𝑿,𝑾]𝒒 [𝑿] . (23)

Given a tangential vector field 𝒒 [𝑿] on S, its evolution on the 𝜀-perturbed surface S𝜀𝑾 is a priori
unknown. One way of getting rid of this indeterminacy is defining the following surface gauge:

Definition 2 (Material Gauge of Surface Independence on Tangential Vector Fields) A tangential
vector field 𝒒 [𝑿] ∈ TS fulfills the gauge of material surface independence ðS𝒒 = 0, if and only if
ðS𝑾 𝒒 [𝑿] = 0 for all 𝑾 ∈ TR3 |S .

Alternatively, we introduce the upper convected deformation derivative ð♯𝑾 : TS → TS by

ð
♯

𝑾 𝒒 [𝑿] := (ð𝑾 𝑞
𝑖 [𝑿])𝜕𝑖𝑿 = ðS𝑾 𝒒 [𝑿] −𝑮 [𝑿,𝑾]𝒒 [𝑿] , (24)

which acts on the contravariant proxy components with respect to the parametrization basis but is indeed
basis independent as per the second equality following (23); and we define the following surface gauge:

Definition 3 (Upper-Convected Gauge of Surface Independence on Tangential Vector Fields) A
tangential vector field 𝒒 [𝑿] ∈ TS fulfills the gauge of upper convected surface independence ð♯𝒒 = 0,
if and only if one of the following equivalent statements is true:

(i)ð♯𝑾 𝒒 [𝑿] = 0 for all 𝑾 ∈ TR3 |S .
(ii)Scalar gauges ð𝑞𝑖 = 0 are fulfilled componentwise for the contravariant proxy field of 𝒒 [𝑿].

In comparison, we define a deformation derivative ð♭𝑾 : TS → TS, which acts on the covariant
proxies {𝑞𝑖 [𝑿]} with respect to the parametrization basis of a tangential vector field 𝒒 [𝑿]. Following
(B.1), we find

ð𝑾 𝑞𝑖 [𝑿] = ð𝑾 (𝑔𝑖 𝑗 [𝑿]𝑞 𝑗 [𝑿]) = 𝑔𝑖 𝑗 [𝑿]ð𝑾 𝑞
𝑗 [𝑿] +2𝑆𝑖 𝑗 [𝑿,𝑾]𝑞 𝑗 [𝑿] .

We therefore may define the lower-convected deformation derivative ð♭𝑾 : TS → TS as follows

ð♭𝑾 𝒒 [𝑿] := 𝑔𝑖 𝑗 [𝑿] (ð𝑾 𝑞𝑖 [𝑿])𝜕 𝑗𝑿 = ðS𝑾 𝒒 [𝑿] +𝑮𝑇 [𝑿,𝑾]𝒒 [𝑿] (25)

where we note that the definition is basis independant. Using the above, we define another surface
gauge:
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Definition 4 (Lower-Convected Gauge of Surface Independence on Tangential Vector Fields) A
tangential vector field 𝒒 [𝑿] ∈ TS fulfill the gauge of lower-convected surface independence ð♭𝒒 = 0, if
and only if one of the following equivalent statements is true:

(i)ð♭𝑾 𝒒 [𝑿] = 0 is valid for all 𝑾 ∈ TR3 |S .
(ii)Scalar gauges ð𝑞𝑖 = 0 are fulfilled componentwise for the covariant proxy field of 𝒒 [𝑿].

Finally, we introduce another deformation derivative, which also applies on vector fields directly
and affects corotational variations of the surface. We take the corotational infinitesimal variation from
[55]. In our notations, it is defined by

ðJ𝑾 𝒒 [𝑿] := ðS𝑾 𝒒 [𝑿] − 𝑨[𝑿,𝑾]𝒒 [𝑿] , (26)

where 2𝑨[𝑿,𝑾] = (𝑮 −𝑮𝑇 ) [𝑿,𝑾] = ∇𝒘 [𝑿] − (∇𝒘 [𝑿])𝑇 , see section 2.7 for more details. We call
the derivative ðJ𝑾 : TS → TS Jaumann deformation derivative of tangential vector fields in direction
of 𝑾 ∈ TR3 |S . The name prefix “Jaumann” is chosen consistently to the naming of time derivatives in
[41], since time and deformation derivatives are structurally closely related. For readers, who are used to
other calculi or notations, the term 𝑨[𝑿,𝑾]𝒒 [𝑿] could also be written as 1

2 ΠTS ((∇R3 ×𝑾) × 𝒒 [𝑿]),
with the usual gradient and cross-product in R3, or 1

2 (∗𝑑𝒘 [𝑿]♭) (∗𝒒 [𝑥]♭)♯ in context of differential
forms, with Hodge- and musical isomorphisms and exterior derivative. Comparing the Jaumann (26)
with the upper-convected (24) and the lower-convected deformation derivative (25) yields

ðJ𝑾 =
1
2

(
ð
♯

𝑾 +ð♭𝑾
)

: TS → TS .

Definition 5 (Jaumann Gauge of Surface Independence on Tangential Vector Fields) A tangential
vector field 𝒒 [𝑿] ∈ TS fulfill the gauge of Jaumann surface independence ðJ𝒒 = 0, if and only if one
of the following equivalent statements is true:

(i)ðJ𝑾 𝒒 [𝑿] = 0 is valid for all 𝑾 ∈ TR3 |S .
(ii)ð𝑾 𝑞

𝑖 [𝑿] + 𝑔𝑖 𝑗 [𝑿]ð𝑾 𝑞 𝑗 [𝑿] = 0 is valid componentwise for the contra- and covariant proxy field
of 𝒒 [𝑿] and for all 𝑾 ∈ TR3 |S .

The four introduced gauges above differ from each other. However, a single assumed gauge
completely determines all four deformation derivatives. Table 2 compares deformation derivatives under
various assumptions of gauges of surface independence. We observe that if a gauge and a deformation
derivative belong to different types, the derivative takes the form 𝚿[𝑿,𝑽]𝒒 [𝑿], where 𝚿[𝑿,𝑽] is
either 𝑮 [𝑿,𝑾] = ∇𝒘 [𝑿] −𝑤⊥ [𝑿] 𝑰𝑰[𝑿], its transpose, its symmetric part, or its skew-symmetric part
as defined in section 2.7. As shown in table 2, if 𝑾 is restricted to a subspace of TR3 |S , some of the
various gauges can become equal. For instance, if 𝑾 describes rigid deformations of the surface, then
the upper-convected, lower-convected and Jaumann gauges would be equal, as illustrated in figure 2.
However, if 𝑾 represents a pure strain deformation, the material and the Jaumann gauge would be the
same, as depicted in figure 3.

3.2.2. Consequences for Energy Variations
For a given state comprising the tangential vector field 𝒒 [𝑿] and a parameterization 𝑿, which fully
determines the surface S, the state energy 𝔘[𝑿, 𝒒 [𝑿]] ∈ R. This allows to define directional total



TANGENTIAL TENSOR FIELDS ON DEFORMABLE SURFACES 15

Derivs.

Gauges ðS𝒒 = 0 ð♯𝒒 = 0 ð♭𝒒 = 0 ðJ𝒒 = 0
(Definition 2) (Definition 3) (Definition 4) (Definition 5)

(23) ðS𝑾 𝒒 [𝑿] 0 𝑮𝒒 [𝑿] −𝑮𝑇𝒒 [𝑿] 𝑨𝒒[𝑿]
(24) ð♯𝑾 𝒒 [𝑿] −𝑮𝒒 [𝑿] 0 −2𝑺𝒒 [𝑿] −𝑺𝒒 [𝑿]
(25) ð♭𝑾 𝒒 [𝑿] 𝑮𝑇𝒒 [𝑿] 2𝑺𝒒 [𝑿] 0 𝑺𝒒 [𝑿]
(26) ðJ𝑾 𝒒 [𝑿] −𝑨𝒒 [𝑿] 𝑺𝒒 [𝑿] −𝑺𝒒 [𝑿] 0

TABLE 2 Deformation derivatives under various gauges of surface independence on
tangential vector fields: Rows from top to bottom exhibit material, upper-convected,
lower-convected and Jaumann deformation derivatives of a tangential vector field
𝒒 [𝑿] ∈ TS. Columns from left to right indicate the assumed gauge of material,
upper-convected, lower-convected or Jaumann surface independence. 𝑾 ∈ TR3 |S is
an arbitrary deformation field of the surface S. We abbreviate the surface gradient of
𝑾 by 𝑮 := 𝑮 [𝑿,𝑾] = ∇𝒘 [𝑿] −𝑤⊥ [𝑿] 𝑰𝑰[𝑿], see section 2.7. The symmetric part of
𝑮 is 𝑺 := 𝑺[𝑿,𝑾] and the antisymmetric part is 𝑨 := 𝑨[𝑿,𝑾], cf. table 1.

unperturbed

material

upper-, lower-convected,

Jaumann

FIG. 2. Rigid rotational deformation of a hemisphere (side and top view): If 𝑿 parameterizes the hemisphere S, then 𝑿 𝜀 =

𝑿 + 𝜀𝑾 + O(𝜀2 ) parameterizes the rotated hemisphere S𝜀 = S𝜀𝑾 + O(𝜀2 ) by an angle 𝜀. Two orthogonal tangential vector
fields (purple) of equal lengths are shown on a fixed longitude and three different latitudes at S. The green and red tangential
vector fields are given on S𝜀 by pushing-forward the purple ones with the map S → S𝜀 assuming different gauges of surface
independence, respectively. At the equator, where the axis of rotation lays parallel to the tangential plane of S, all four gauges
imply the same pushforward, since the surface gradient of 𝑾 is vanishing, cf. table 2. At all other locations, only the symmetric
gradient of 𝑾 is vanishing due to rigid body deformation, i. e., the upper-, lower-convected and Jaumann gauge yield equal
pushforwards, whereas the material gauge implies a different one.

variations of 𝔘 by〈
𝛿𝔘

𝛿𝑿
,𝑾

〉
L2 (TR3 |S )

:= lim
𝜀→0

𝔘[𝑿 + 𝜀𝑾, 𝒒 [𝑿 + 𝜀𝑾]] −𝔘[𝑿, 𝒒 [𝑿]]
𝜀

∈ R , (27)〈
𝛿𝔘

𝛿𝒒
, 𝒓

〉
L2 (TS)

:= lim
𝜀→0

𝔘[𝑿, 𝒒 [𝑿] + 𝜀𝒓] −𝔘[𝑿, 𝒒 [𝑿]]
𝜀

∈ R (28)

in arbitrary directions of 𝑾 ∈ TR3 |S and 𝒓 ∈ TS. Variation (27) bears a subtle issue. The term 𝔘[𝑿 +
𝜀𝑾, 𝒒 [𝑿 + 𝜀𝑾]] is not determined, since 𝒒 [𝑿 + 𝜀𝑾] ∈ TS𝜀𝑾 is not determined. However, a Taylor



16 I. NITSCHKE ET AL.

unperturbed

material, Jaumann

upper-convected

lower-convected

FIG. 3. Strain deformation of a hemisphere (side and top view): If 𝑿 parameterize the hemisphere S, then, for 𝑾 = 𝝂 + 𝒆𝑧 ,
𝑿 𝜀 = 𝑿 + 𝜀𝑾 parameterize the strained hemispheroid S𝜀𝑾 . Two orthogonal tangential vector fields (purple) of equal lengths
are shown on a fixed longitude and three different latitudes at S exactly like in figure 2. The green, red and blue tangential
vector fields are given on S𝜀 by pushing-forward the purple ones with the map S → S𝜀 assuming different gauges of surface
independence, respectively. The material and Jaumann gauge imply the same pushforward, since this is a pure strain deformation,
i. e., the surface gradient of 𝑾 is symmetric, cf. table 2. Gray parallel lines on the unrolled arc-length segment (right) indicate
length preserving for pushforwarded vectors due to material and Jaumann gauges. By contrast, pushforwarded vectors, w. r. t. the
upper- or lower-convected gauge, are stretched along or against the deformation. However, the geometric mean of both yields the
length preserved green vectors.

expansion at 𝜀 = 0, w. r. t. the embedding space shows

𝒒 [𝑿 + 𝜀𝑾] = ΠTS𝜀𝑾 𝒒 [𝑿 + 𝜀𝑾]

= ΠTS𝜀𝑾

(
(𝒒 [𝑿])∗𝜀𝑾 + 𝜀

(
𝑑

𝑑𝜀

���
𝜀=0

𝒒 [𝑿 + 𝜀𝑾]
)∗𝜀𝑾

+O(𝜀2)
)

where ∗𝜀𝑾 : TR3 |S → TR3 |S𝜀𝑾 is the simplest conceivable R3-pushforward for the map S → S𝜀𝑾
and is given by

𝑸∗𝜀𝑾 (𝑦1, 𝑦2) :=𝑄𝐼 (𝑦1, 𝑦2)𝒆𝐼 ∈ T(𝑿+𝜀𝑾 ) (𝑦1 ,𝑦2 )R
3 (29)

for all vector fields 𝑸 ∈ TR3 |S . The deformation derivative ð𝑾 : TS → TR3 |S , defined in (22), and
another partial Taylor expansion at ΠTS𝜀𝑾 (𝒒 [𝑿])∗𝜀𝑾 ∈ TS𝜀𝑾 of the energy 𝔘 w. r. t. to the deformed
surface S𝜀𝑾 gives

𝔘[𝑿 + 𝜀𝑾, 𝒒 [𝑿 + 𝜀𝑾]]

= 𝔘[𝑿 + 𝜀𝑾,ΠTS𝜀𝑾 (𝒒 [𝑿])∗𝜀𝑾 + 𝜀ΠTS𝜀𝑾

(
ð𝑾 𝒒 [𝑿]

)∗𝜀𝑾 +O(𝜀2)]
= 𝔘[𝑿 + 𝜀𝑾,ΠTS𝜀𝑾 (𝒒 [𝑿])∗𝜀𝑾 ] (30)

+ 𝜀
〈

𝛿𝔘

𝛿(ΠTS𝜀𝑾 𝒒∗𝜀𝑾 ) ,ΠTS𝜀𝑾

(
ð𝑾 𝒒 [𝑿]

)∗𝜀𝑾 〉
L2 (TS𝜀𝑾 )

+O(𝜀2) ,



TANGENTIAL TENSOR FIELDS ON DEFORMABLE SURFACES 17

where we used the directional variation (28), w. r. t. tangential vector field ΠTS𝜀𝑾 (𝒒 [𝑿])∗𝜀𝑾 ∈ TS𝜀𝑾
in direction of ΠTS𝜀𝑾

(
ð𝑾 𝒒 [𝑿]

)∗𝜀𝑾 ∈ TS𝜀𝑾 , and properties of inner products. To relate the total
variation (27), we define the partial variation〈

𝜕𝔘

𝜕𝑿
,𝑾

〉
L2 (TR3 |S )

:= lim
𝜀→0

𝔘[𝑿 + 𝜀𝑾,ΠTS𝜀𝑾 (𝒒 [𝑿])∗𝜀𝑾 ] −𝔘[𝑿, 𝒒 [𝑿]]
𝜀

∈ R (31)

in arbitrary directions of 𝑾 ∈ TR3 |S w. r. t. L2(TR3 |S). In practice, this derivative means that everything
in 𝔘 has to be differentiated w. r. t. 𝑿 except for 𝒒 [𝑿] ∈ TS (incl. its frame). For instance, in the energy
term

∫
S ∥𝒒 [𝑿] ∥2

TS𝜇[𝑿] only 𝜇[𝑿] has to be differentiated. Using that ΠTS𝜀𝑾 ◦∗𝜀𝑾 → ΠTS is valid
for 𝜀→ 0, the material deformation derivative (23) and substituting the Taylor expansion above into the
total variation (27) yields〈

𝛿𝔘

𝛿𝑿
,𝑾

〉
L2 (TR3 |S )

=

〈
𝜕𝔘

𝜕𝑿
,𝑾

〉
L2 (TR3 |S )

+
〈
𝛿𝔘

𝛿𝒒
,ðS𝑾 𝒒 [𝑿]

〉
L2 (TS)

. (32)

Note that the material deformation derivative ðS𝑾 𝒒 [𝑿] ∈ TS in (32) depends on the chosen gauge of
surface independence and can be obtained from the first row of table 2.

Some readers may be used to consider rather contravariant proxys of vector fields than
an entire field with its frame. Hence, we give with (A.3) in appendix A.1 an equivalent
identity w. r. t. to an energy 𝔘̃[𝑿, 𝑞1 [𝑿], 𝑞2 [𝑿]], but in terms of a contravariant approach. Also
treating the proxy of the metric tensor explicitly could be of advantage. For this purpose
(A.5) in appendix A.2 gives an equivalent identity w. r. t. an energy 𝔘̂[𝑿, 𝒒 [𝑿], {𝑔𝑖 𝑗 [𝑿]}]. We
like to highlight that

〈
𝛿𝔘
𝛿𝑿 ,𝑾

〉
L2 (TR3 |S )

depends only on the semantical description of 𝔘 and
the assumed gauge of independence. Even if we write the same energy in dependency of
[𝑿, {𝑞𝑖 [𝑿]}, {𝑞𝑖 [𝑿]}, 𝒒 [𝑿], {𝑔𝑖 𝑗 [𝑿]}, {𝑔𝑖 𝑗 [𝑿]}, 𝑰𝑰[𝑿],H[𝑿],K[𝑿], . . .] the result is still the same,
which shows the advantage of total derivatives. This is also the reason to omit geometrical quantities
other than 𝑿 in the dependency list, since all of them are represented by 𝑿 and would have the only
effect to blow up formulas without an influence on the results.

Sometimes it could be difficult to calculate the partial variation of an energy without touching its
tangential vector field argument. Or it is hard to obtain the total variation for the chosen gauge of surface
independence, though it is much easier for another gauge. In such situations it could be helpful to use
the identities 〈

𝛿𝔘

𝛿𝑿
,𝑾

〉
L2 (TR3 |S )

=

〈
𝛿𝔘

𝛿𝑿

���
ðΨ𝒒=0

,𝑾

〉
L2 (TR3 |S )

+
〈
𝛿𝔘

𝛿𝒒
,ðΨ𝑾 𝒒 [𝑿]

〉
L2 (TS)

(33)〈
𝜕𝔘

𝜕𝑿
,𝑾

〉
L2 (TR3 |S )

=

〈
𝛿𝔘

𝛿𝑿

���
ðΨ𝒒=0

,𝑾

〉
L2 (TR3 |S )

+
〈
𝛿𝔘

𝛿𝒒
,ðΨ𝑾 𝒒 [𝑿] −ðS𝑾 𝒒 [𝑿]

〉
L2 (TS)

, (34)

where the symbol Ψ ∈ {S, ♯, ♭,J} determine the desired deformation derivative. We get both identities
by using (32) and the fact that the partial variation (31) does not depend on any gauge. Moreover, (33)
generalizes (32) in the sense that (33) equals (32) for Ψ = S, since 𝛿𝔘

𝛿𝑿

��
ðS𝒒=0 =

𝜕𝔘
𝜕𝑿 .
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3.2.3. Consequences for L2-Gradients
The L2-gradient is weakly given by〈

∇L2𝔘, (𝑾, 𝒓)
〉

L2 (TR3 |S×TS) :=
〈
𝛿𝔘

𝛿𝑿
,𝑾

〉
L2 (TR3 |S )

+
〈
𝛿𝔘

𝛿𝒒
, 𝒓

〉
L2 (TS)

for all (𝑾, 𝒓) ∈ TR3 |S ×TS. Considering (32) and a chosen gauge of independence for 𝒒 [𝑿] ∈ TS, we
get 〈

∇L2𝔘, (𝑾, 𝒓)
〉

L2 (TR3 |S×TS)

=

〈
𝜕𝔘

𝜕𝑿
,𝑾

〉
L2 (TR3 |S )

+
〈
𝛿𝔘

𝛿𝒒
, 𝒓 +𝚿[𝑿,𝑾]𝒒 [𝑿]

〉
L2 (TS)

, (35)

where 𝚿 = 0 𝑮 −𝑮𝑇 𝑨

for 0 = ðS𝒒 ð♯𝒒 ð♭𝒒 ðJ𝒒

according to the first row in table 2. The strong formulation of the L2-gradient reads

∇L2𝔘 =

(
𝛿𝔘

𝛿𝑿
,
𝛿𝔘

𝛿𝒒

)
=

(
𝜕𝔘

𝜕𝑿
−divT2S𝝈,

𝛿𝔘

𝛿𝒒

)
∈ TR3 |S ×TS , (36)

where we used (35), the deformation-L2-adjoints 𝚿‡ [𝑿] given in (15) and the gauge stress tensor fields
𝝈 ∈ T2S, which are depending on the chosen gauge and given in the first row of table 3. In an equation
of motion containing ∇L2𝔘, e. g., in the L2-gradient flow in the subsection below, the term divT2S𝝈 =

div𝝈+⟨𝑰𝑰[𝑿],𝝈⟩ 𝝂 ∈ TR3 |S can be interpreted as a partial force induced by the chosen gauge of surface
independence. We name the resulting force “partial”, since 𝝈 depends on the syntactical description of
𝔘. For instance, if we use an equivalent contravariant approach 𝔘̃[𝑿, 𝑞1 [𝑿], 𝑞2 [𝑿]] = 𝔘[𝑿, 𝒒 [𝑿]], as
given in appendix A.1, we see in (A.4) that we end up with a gauge stress field 𝝈̃ = 𝝈− 𝛿𝔘

𝛿𝒒 ⊗ 𝒒 [𝑿] ∈
T2S, see second row in table 3. Note that the approach in appendix A.2, where we treat the metric proxy
explicitly by 𝔘̂[𝑿, 𝒒 [𝑿], {𝑔𝑖 𝑗 [𝑿]}] = 𝔘[𝑿, 𝒒 [𝑿]] and using the term 𝜕𝔘̂

𝜕𝑿 instead 𝜕𝔘
𝜕𝑿 , yields the stress

tensor fields 𝝈̂ = 𝝈 + 𝜕𝔘̂
𝜕𝑔𝑖 𝑗

𝜕𝑖𝑿 ⊗ 𝜕 𝑗𝑿.

Remark 3 The solutions of the stationary equation 0 = ∇L2𝔘 do not depend on any gauge of surface
independence. On the one hand 𝜕𝔘

𝜕𝑿 does not depend on a gauge. On the other hand at a local extremum
of 𝔘, where 𝛿𝔘

𝛿𝒒 = 0 is valid, all gauge stress tensor fields 𝝈 are vanishing.

3.2.4. Consequences for L2-Gradient Flows
In general, the strong formulation of the L2-gradient flow reads(

𝑑

𝑑𝑡
𝑿,𝔇𝔱𝒒 [𝑿]

)
= −𝜆∇L2𝔘 , (37)

where 𝜆 > 0 is a mobility parameter coefficient and 𝔇𝔱𝒒 [𝑿] ∈ TS an observer-invariant instantaneous
time derivative of 𝒒 [𝑿] ∈ TS given in [41, Conclusion 6]. We consider the material, upper-convected,
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ðS𝒒 = 0 ð♯𝒒 = 0 ð♭𝒒 = 0 ðJ𝒒 = 0

(Definition 2) (Definition 3) (Definition 4) (Definition 5)

𝝈 0 𝛿𝔘
𝛿𝒒 ⊗ 𝒒 [𝑿] −𝒒 [𝑿] ⊗ 𝛿𝔘

𝛿𝒒
𝛿𝔘
𝛿𝒒 ? 𝒒 [𝑿]

𝝈̃ − 𝛿𝔘̃
𝛿𝒒 ⊗ 𝒒 [𝑿] 0 −2 𝛿𝔘̃

𝛿𝒒 > 𝒒 [𝑿] − 𝛿𝔘̃
𝛿𝒒 > 𝒒 [𝑿]

TABLE 3 Gauge stress tensor fields 𝝈, 𝝈̃ ∈ T2S caused by different
gauges of surface independence. 𝝈, resp. 𝝈̃, apply in (36) and (56),
resp. (A.4), according to syntactically stipulated partial dependency in
the energy 𝔘, or 𝔘̃. We define anti- and symmetric outer products by
2𝒓? 𝒒 := 𝒓 ⊗ 𝒒− 𝒒 ⊗ 𝒓 and 2𝒓> 𝒒 := 𝒓 ⊗ 𝒒 + 𝒒 ⊗ 𝒓 for all 𝒓, 𝒒 ∈ TS.

lower-convected and Jaumann time derivative in this context. At this, the parameterization 𝑿 is time-
depending, as well as the tangential vector field 𝒒 [𝑿] ∈ TS by 𝑿 and also partially in 𝑡, i. e., at an
event (𝑡,𝑿 |𝑡 (𝑦1, 𝑦2)) ∈ R×S|𝑡 ⊂ R4 describes 𝑿 (𝑡, 𝑦1, 𝑦2) := 𝑿 |𝑡 (𝑦1, 𝑦2) ∈ S|𝑡 the spatial location and
𝒒 [𝑿] (𝑡, 𝑦1, 𝑦2) = (𝒒 [𝑿] (𝑦1, 𝑦2)) |𝑡 ∈ T

𝑿 |𝑡 (𝑦1 ,𝑦2 )S|𝑡 the state of the vector field. We assume that the
energy 𝔘 is instantaneous and not partially time depending, i. e., 𝔘 does not depend on any rates of
𝑿 or 𝒒 [𝑿] and it holds (𝔘[𝑿, 𝒒 [𝑿]]) |𝑡 = 𝔘[𝑿 |𝑡 , (𝒒 [𝑿]) |𝑡 ], which is common for potential or free
energies. We omit the affix |𝑡 if it is clear that quantities are given at time 𝑡.

Note that the time depending parameterization 𝑿 can be any observer parameterization for the
time depending surface S. This can also be the material parameterization 𝑿𝔪. By fixing a single
material particle at (𝑦1

𝔪, 𝑦
2
𝔪) in the parameter space, 𝑿𝔪 | (𝑦1

𝔪 ,𝑦
2
𝔪 ) (𝑡) describes the world line of this

material particle. While the material parameterization takes the Lagrange perspective, the observer
parameterization 𝑿𝔬 is an arbitrary parameterization taking the observer perspective, i. e., 𝑿𝔬 | (𝑦1

𝔬 ,𝑦
2
𝔬 ) (𝑡)

describes the world line of an observer particle, see [41]. The left-hand side of (37) depends on
the dynamics of the material, but we are able to formulate it invariantly of the observer. The first
component is the material velocity field 𝑽𝔪 [𝑿𝔪] := 𝑑

𝑑𝑡
𝑿𝔬 = 𝜕𝑡𝑿𝔪 ∈ TR3 |S . Whereas 𝑽𝔬 [𝑿𝔬] :=

𝜕𝑡𝑿𝔬 ∈ TR3 |S is the observer velocity field. From observer perspective, both velocity fields can
be related by the relative velocity 𝒖[𝑿𝔬,𝑿𝔪] (𝑡, 𝑦1

𝔬, 𝑦
1
𝔬) := 𝑽𝔬

𝔪 [𝑿𝔬,𝑿𝔪] (𝑡, 𝑦1
𝔬, 𝑦

1
𝔬) −𝑽𝔬 [𝑿𝔬] (𝑡, 𝑦1

𝔬, 𝑦
1
𝔬),

where 𝑽𝔬
𝔪 [𝑿𝔬,𝑿𝔪] (𝑡, 𝑦1

𝔬, 𝑦
1
𝔬) :=𝑽𝔪 [𝑿𝔪] (𝑡, (𝑿𝔪 |𝑡 )−1(𝑿𝔬 (𝑡, 𝑦1

𝔬, 𝑦
1
𝔬))) is the material velocity evaluated

at observer location 𝑿𝔬 (𝑡, 𝑦1
𝔬, 𝑦

1
𝔬). Note that for the relative velocity field holds 𝒖[𝑿𝔬,𝑿𝔪] ∈ TS, since

the normal part of the observer and material velocity is equal. Therefore, the material time derivative of
𝒒 [𝑿𝔬] ∈ TS is given by

¤𝒒 [𝑿𝔬] = (𝜕𝑡𝑞𝑖 [𝑿𝔬])𝜕𝑖𝑿𝔬 +∇𝒖 [𝑿𝔬 ,𝑿𝔪 ]𝒒 [𝑿𝔬] +𝑮 [𝑿𝔬,𝑽𝔬 [𝑿𝔬]]𝒒 [𝑿𝔬]

= ΠTS
𝑑

𝑑𝑡
𝒒 [𝑿𝔬] ,

where the rear identity is a conclusion in [41, Proposition 4]. All considered time derivatives can be
derived from the material one by

𝔇𝔱𝒒 [𝑿𝔬] = ¤𝒒 [𝑿𝔬] −𝚽[𝑿𝔬,𝑽
𝔬
𝔪 [𝑿𝔬,𝑿𝔪]]𝒒 [𝑿𝔬] , (38)

where 𝔇𝔱𝒒 = ¤𝒒 𝔏♯𝒒 𝔏♭𝒒 𝔍𝒒
for 𝚽 = 0 𝑮 −𝑮𝑇 𝑨 ,
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where 𝔏♯ is the upper-convected, 𝔏♭ the lower-convected and 𝔍 the Jaumann time derivative on
tangential vector fields, see [41].

Since the left-handed side of (37) is observer-invariant and the right-handed side is instantaneous,
we take the Lagrangian perspective in the following without loss of generality. This means that we set
𝑿 := 𝑿𝔬 = 𝑿𝔪. Due to this it is 𝑽 [𝑿] := 𝑽𝔪 [𝑿𝔪] = 𝑽𝔬

𝔪 [𝑿𝔬,𝑿𝔪] = 𝑽𝔬 [𝑿𝔬] and 𝒖[𝑿𝔬,𝑿𝔪] = 0 valid.
The time derivative of the energy 𝔘 gives the energy rate

𝑑

𝑑𝑡
𝔘 := lim

𝜀→0

(𝔘[𝑿, 𝒒 [𝑿]]) |𝑡+𝜀 − (𝔘[𝑿, 𝒒 [𝑿]]) |𝑡
𝜀

=

〈
𝜕𝔘

𝜕𝑿
,𝑽 [𝑿]

〉
L2 (TR3 |S )

+
〈
𝛿𝔘

𝛿𝒒
, ¤𝒒 [𝑿]

〉
L2 (TS)

.

This can be obtained by Taylor expansions at 𝜖 = 0, similarly to (30) for 𝑾 = 𝑽 [𝑿] + O(𝜀). A priori,
the energy rate is invariant w. r. t. any chosen gauges of independence. This behavior changes if we
substitute the gauge-dependent gradient flow (37) into this rate. With (32) we get

𝑑

𝑑𝑡
𝔘 =

〈
𝛿𝔘

𝛿𝑿
,𝑽 [𝑿]

〉
L2 (TR3 |S )

+
〈
𝛿𝔘

𝛿𝒒
, ¤𝒒 [𝑿] −ðS𝑽 [𝑿 ]𝒒 [𝑿]

〉
L2 (TS)

=

〈
𝛿𝔘

𝛿𝑿
,𝑽 [𝑿]

〉
L2 (TR3 |S )

+
〈
𝛿𝔘

𝛿𝒒
,𝔇𝔱𝒒 [𝑿] + (𝚽−𝚿) [𝑿,𝑽 [𝑿]]𝒒 [𝑿]

〉
L2 (TS)

(39)

= −𝜆


∇L2𝔘



2
L2 (TR3 |S×TS) +

〈
𝛿𝔘

𝛿𝒒
, (𝚽−𝚿) [𝑿,𝑽 [𝑿]]𝒒 [𝑿]

〉
L2 (TS)

, (40)

where 𝚿[𝑿,𝑽 [𝑿]] ∈ T2S is already introduced in (35) and depends on the chosen gauge, cf. the header
in table 4. Using a time derivative in the gradient flow (37), whose name is consistent with the chosen
gauge, e. g., upper-convected time derivative for a upper-convected gauge, is sufficient to ensure a
dissipative energy, i. e., it holds 𝑑

𝑑𝑡
𝔘 ≤ 0, since (𝚽−𝚿) [𝑿,𝑽 [𝑿]] = 0 is valid. In contrast, using time

derivatives and gauges inconsistently in their names, e. g., material time derivative and Jaumann gauge,
could rise an issue for the dissipation, especially for small 𝜆. However, we present in table 4 all 16
possible combinations we discussed.

Remark 4 Using the Onsager’s variational principle [13] to obtain the gradient flow (37) is forcing
a consistent choice of time derivative and gauge of surface independence. This follows by minimizing
the Rayleighian

ℜ[𝑽,𝔇𝔱𝒒] :=
1
2𝜆

(
∥𝑽∥2

L2 (TR3 |S )
+ ∥𝔇𝔱𝒒∥2

L2 (TR3 |S )

)
+ ( 𝑑
𝑑𝑡

𝔘) [𝑽,𝔇𝔱𝒒]

by the necessary condition (0,0) = ( 𝛿ℜ
𝛿𝑽 ,

𝛿ℜ
𝛿(𝔇𝔱𝒒) ), with an energy rate 𝑑

𝑑𝑡
𝔘 given in (39) w. r. t. process

variables 𝑽 and 𝔇𝔱𝒒. As a consequence, (𝚽−𝚿) [𝑿,𝑽 [𝑿]] = 0 has to be valid by comparison with the
gradient flow (37).

In section 4.2 we provide an example for a Frank-Oseen-Helfrich energy, derive the L2-gradient
flow and demonstrate differences of the consistent combinations in table 4.
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ðS𝒒 = 0 ð♯𝒒 = 0 ð♭𝒒 = 0 ðJ𝒒 = 0
(𝚽−𝚿) [𝑿,𝑽 [𝑿]] (Definition2) (Definition 3) (Definition 4) (Definition 5)

⇒ 𝚿 = 0 ⇒ 𝚿 = 𝑮 ⇒ 𝚿 = −𝑮𝑇 ⇒ 𝚿 = 𝑨

¤𝒒 [𝑿] ⇒𝚽 = 0 0 −𝑮 [𝑿,𝑽 [𝑿]] 𝑮𝑇 [𝑿,𝑽 [𝑿]] −𝑨[𝑿,𝑽 [𝑿]]
𝔏♯𝒒 [𝑿] ⇒𝚽 = 𝑮 𝑮 [𝑿,𝑽 [𝑿]] 0 2𝑺[𝑿,𝑽 [𝑿]] 𝑺[𝑿,𝑽 [𝑿]]
𝔏♭𝒒 [𝑿] ⇒𝚽 = −𝑮𝑇 −𝑮𝑇 [𝑿,𝑽 [𝑿]] −2𝑺[𝑿,𝑽 [𝑿]] 0 −𝑺[𝑿,𝑽 [𝑿]]
𝔍𝒒 [𝑿] ⇒𝚽 = 𝑨 𝑨[𝑿,𝑽 [𝑿]] −𝑺[𝑿,𝑽 [𝑿]] 𝑺[𝑿,𝑽 [𝑿]] 0

TABLE 4 Determining (𝚽−𝚿) [𝑿,𝑽 [𝑿]] ∈ T2S in the rear term of energy rate (40)
by combinations of different chosen gauges of surface independence (columns) and time
derivatives (rows). From left to right, resp. top to bottom, it is material, upper-convected,
lower-convected, Jaumann gauge, resp. time derivative, considered. For definitions of
𝑮,𝑺 and 𝑨 see table 1 and for time derivatives [41, Conclusion 6]. Note that 𝑽 is the
material as well as the observer velocity.

3.3. Tangential 2-Tensor Fields

The proceeding is almost the same as for tangential vector fields in section 3.2. Therefore we keep the
argumentation much shorter in this section.

3.3.1. Gauges of Surface Independence
A tangential 2-tensor field 𝒒 [𝑿] ∈ T2S can be represented in a tangential as well as the Euclidean frame,
i. e., it holds 𝒒 [𝑿] = 𝑞𝑖 𝑗 [𝑿]𝜕𝑖𝑿 ⊗ 𝜕 𝑗𝑿 = 𝑞𝐼 𝐽 [𝑿]𝒆𝐼 ⊗ 𝒆𝐽 . Since 𝒆𝐼 does not depend on the surface in
any way, we define and calculate

ð𝑾 𝒒 [𝑿] :=
(
ð𝑾 𝑞

𝐼 𝐽 [𝑿]
)
𝒆𝐼 ⊗ 𝒆𝐽

=
(
ð𝑾 𝑞

𝑖 𝑗 [𝑿]
)
𝜕𝑖𝑿 ⊗ 𝜕 𝑗𝑿 + 𝑞𝑖 𝑗 [𝑿]

(
𝜕𝑖𝑾 ⊗ 𝜕 𝑗𝑿 + 𝜕𝑖𝑿 ⊗ 𝜕 𝑗𝑾

)
(41)

w. r. t. the deformation derivative (17) on scalar fields. The derivative (41) maps to T2R3 |S , but all non-
tangential parts of the image are not bearing any options for a possible gauge. Therefore, we define the
material deformation derivative ðS𝑾 : T2S→T2S of tangential 2-tensor fields in direction of𝑾 ∈ TR3 |S
by

ðS𝑾 𝒒 [𝑿] := (ΠT2S [𝑿] ◦ð𝑾 )𝒒 [𝑿] (42)

=
(
ð𝑾 𝑞

𝑖 𝑗 [𝑿]
)
𝜕𝑖𝑿 ⊗ 𝜕 𝑗𝑿 +𝑮 [𝑿,𝑾]𝒒 [𝑿] + 𝒒 [𝑿]𝑮𝑇 [𝑿,𝑾] .

Definition 6 (Gauge of Material Surface Independence on Tangential 2-tensor Fields) A tangential
tensor field 𝒒 [𝑿] ∈ T2S fulfill the gauge of material surface independence ðS𝒒 = 0, if and only if
ðS𝑾 𝒒 [𝑿] = 0 is valid for all 𝑾 ∈ TR3 |S .

The ♮-convected deformation derivatives ð♮𝑾 : T2S → T2S of tangential 2-tensor fields in direction
of 𝑾 ∈ TR3 |S are given in the four flavors ♮ ∈ {♯♯,♭♭, ♯♭, ♭♯} and systematically named in this order
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by prefixes upper-upper (or fully-upper), lower-lower (or fully-lower), upper-lower and lower-upper.
They are principally affected by the scalar deformation of the ♮-proxy matrix in (T0S)2×2 given by
respective “index-height”, i. e., we define

ð
♮

𝑾 𝒒 [𝑿] =



ð
♯♯

𝑾 𝒒 [𝑿] :=
(
ð𝑾 𝑞

𝑖 𝑗 [𝑿]
)
𝜕𝑖𝑿 ⊗ 𝜕 𝑗𝑿

ð♭♭𝑾 𝒒 [𝑿] := 𝑔𝑖𝑘 [𝑿]𝑔 𝑗𝑙 [𝑿]
(
ð𝑾 𝑞𝑘𝑙 [𝑿]

)
𝜕𝑖𝑿 ⊗ 𝜕 𝑗𝑿

ð
♯♭

𝑾 𝒒 [𝑿] := 𝑔 𝑗𝑘 [𝑿]
(
ð𝑾 𝑞

𝑖
𝑘 [𝑿]

)
𝜕𝑖𝑿 ⊗ 𝜕 𝑗𝑿

ð
♭♯

𝑾 𝒒 [𝑿] := 𝑔𝑖𝑘 [𝑿]
(
ð𝑾 𝑞

𝑗

𝑘
[𝑿]

)
𝜕𝑖𝑿 ⊗ 𝜕 𝑗𝑿 .

(43)

Calculating the relation to the material deformation derivative results in

ð
♮

𝑾 𝒒 [𝑿] = ðS𝑾 𝒒 [𝑿] −𝚿1 [𝑿,𝑾]𝒒 [𝑿] − 𝒒 [𝑿]𝚿𝑇2 [𝑿,𝑾] , (44)

where 𝚿1 = 𝑮 −𝑮𝑇 𝑮 −𝑮𝑇
and 𝚿2 = 𝑮 −𝑮𝑇 −𝑮𝑇 𝑮
for ♮ = ♯♯ ♭♭ ♯♭ ♭♯ .

Definition 7 (Gauge of ♮-Convected Surface Independence on Tangential 2-Tensor Fields) A
tangential 2-tensor field 𝒒 [𝑿] ∈ T2S fulfill the gauge of ♮-convected surface independence ð♮𝒒 = 0
for ♮ ∈ {♯♯,♭♭, ♯♭, ♭♯}, if and only if one of the following equivalent statements is true:

(i)ð♮𝑾 𝒒 [𝑿] = 0 is valid for all 𝑾 ∈ TR3 |S .
(ii)Scalar gauges

ð𝑞𝑖 𝑗 = 0 for ♮ = ♯♯,
or ð𝑞𝑖 𝑗 = 0 for ♮ = ♭♭,
or ð𝑞𝑖

𝑗
= 0 for ♮ = ♯♭,

or ð𝑞
𝑗

𝑖
= 0 for ♮ = ♭♯,

are fulfilled componentwise for the respective proxy field of 𝒒 [𝑿].

We define the Jaumann deformation derivative ðJ𝑾 : T2S → T2S of tangential 2-tensor fields 𝒒 [𝑿]
in direction of 𝑾 ∈ TR3 |S by

ðJ𝑾 𝒒 [𝑿] := ðS𝑾 𝒒 [𝑿] − 𝑨[𝑿,𝑾]𝒒 [𝑿] + 𝒒 [𝑿]𝑨[𝑿,𝑾] . (45)

As with the previous definition (26) for vector fields, this also agrees with the corotational infinitesimal
variation from [55]. The relation to the ♮-convected deformation derivatives (44) is

ðJ𝑾 𝒒 [𝑿] = 1
2

(
ð
♯♯

𝑾 𝒒 [𝑿] +ð♭♭𝑾 𝒒 [𝑿]
)
=

1
2

(
ð
♯♭

𝑾 𝒒 [𝑿] +ð♭♯𝑾 𝒒 [𝑿]
)

. (46)

Definition 8 (Gauge of Jaumann Surface Independence on Tangential 2-Tensor Fields) A tangential
2-tensor field 𝒒 [𝑿] ∈ T2S fulfill the gauge of Jaumann surface independence ðJ𝒒 = 0, if and only if
one of the following equivalent statements is true:

(i)ðJ𝑾 𝒒 [𝑿] = 0 is valid for all 𝑾 ∈ TR3 |S .
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(ii)ð𝑾 𝑞
𝑖 𝑗 [𝑿] +𝑔𝑖𝑘 [𝑿]𝑔 𝑗𝑙 [𝑿]ð𝑾 𝑞𝑘𝑙 [𝑿] = 0 is valid componentwise for the fully contra- and covariant

proxy field of 𝒒 [𝑿] and for all 𝑾 ∈ TR3 |S .
(iii)𝑔 𝑗𝑘 [𝑿]ð𝑾 𝑞

𝑖
𝑘
[𝑿] + 𝑔𝑖𝑘 [𝑿]ð𝑾 𝑞

𝑗

𝑘
[𝑿] = 0 is valid componentwise for the mixed contra- and

covariant proxy field of 𝒒 [𝑿] and for all 𝑾 ∈ TR3 |S .

As for tangential vector fields, restricting the deformation direction 𝑾 so that only rigid body
deformations are considered, i. e., it is 𝑺[𝑿,𝑾] = 0, the Jaumann and all ♮-convected deformation
derivatives are equal. In contrast, if we consider only strain deformations, i. e., 𝑨[𝑿,𝑾] = 0, then the
Jaumann and the material deformation derivatives are equal.

3.3.2. Consequences for Energy Variations
All definitions, proceedings and consequences for energy variations in section 3.2.2 are also applicable
for tangential 2-tensor fields, but for 𝒒 [𝑿] ∈ T2S. Especially the chain rule (32) reads〈

𝛿𝔘

𝛿𝑿
,𝑾

〉
L2 (TR3 |S )

=

〈
𝜕𝔘

𝜕𝑿
,𝑾

〉
L2 (TR3 |S )

+
〈
𝛿𝔘

𝛿𝒒
,ðS𝑾 𝒒 [𝑿]

〉
L2 (T2S)

(47)

for an energy 𝔘 = 𝔘[𝑿, 𝒒 [𝑿]]. Moreover, identities (33) and (34) become〈
𝛿𝔘

𝛿𝑿
,𝑾

〉
L2 (TR3 |S )

=

〈
𝛿𝔘

𝛿𝑿

���
ðΨ𝒒=0

,𝑾

〉
L2 (TR3 |S )

+
〈
𝛿𝔘

𝛿𝒒
,ðΨ𝑾 𝒒 [𝑿]

〉
L2 (T2S)

(48)〈
𝜕𝔘

𝜕𝑿
,𝑾

〉
L2 (TR3 |S )

=

〈
𝛿𝔘

𝛿𝑿

���
ðΨ𝒒=0

,𝑾

〉
L2 (TR3 |S )

+
〈
𝛿𝔘

𝛿𝒒
,ðΨ𝑾 𝒒 [𝑿] −ðS𝑾 𝒒 [𝑿]

〉
L2 (T2S)

, (49)

for symbols Ψ ∈ {S, ♯♯, ♭♭, ♯♭, ♭♯,J}.

3.3.3. Consequences for L2-Gradients
The weak L2-gradient reads〈

∇L2𝔘, (𝑾, 𝒓)
〉

L2 (TR3 |S×T2S)

=

〈
𝜕𝔘

𝜕𝑿
,𝑾

〉
L2 (TR3 |S )

+
〈
𝛿𝔘

𝛿𝒒
, 𝒓 +𝚿1 [𝑿,𝑾]𝒒 [𝑿] + 𝒒 [𝑿]𝚿𝑇2 [𝑿,𝑾]

〉
L2 (T2S)

,

where 𝚿1 = 0 𝑮 −𝑮𝑇 𝑮 −𝑮𝑇 𝑨
and 𝚿2 = 0 𝑮 −𝑮𝑇 −𝑮𝑇 𝑮 𝑨

for 0 = ðS𝒒 ð♯♯𝒒 ð♭♭𝒒 ð♯♭𝒒 ð♭♯𝒒 ðJ𝒒

for all 𝑾 ∈ TR3 |S and 𝒓 ∈ T2S. Using L2-adjoints of 𝚿1 [𝑿,𝑾],𝚿2 [𝑿,𝑾] ∈ T2S in compliance with
(15) we obtain the strong formulation

∇L2𝔘 =

(
𝛿𝔘

𝛿𝑿
,
𝛿𝔘

𝛿𝒒

)
=

(
𝜕𝔘

𝜕𝑿
−divT2S𝝈,

𝛿𝔘

𝛿𝒒

)
(50)
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with gauge stress 𝝈 ∈ T2S given by

𝝈 =



0 for ðS𝒒 = 0
𝛿𝔘
𝛿𝒒 𝒒

𝑇 [𝑿] +
(
𝛿𝔘
𝛿𝒒

)𝑇
𝒒 [𝑿] =: 𝝈♯♯ for ð♯♯𝒒 = 0

−𝒒 [𝑿]
(
𝛿𝔘
𝛿𝒒

)𝑇
− 𝒒𝑇 [𝑿] 𝛿𝔘

𝛿𝒒 = −𝝈𝑇
♯♯

for ð♭♭𝒒 = 0
𝛿𝔘
𝛿𝒒 𝒒

𝑇 [𝑿] − 𝒒𝑇 [𝑿] 𝛿𝔘
𝛿𝒒 =: 𝝈♯♭ for ð♯♭𝒒 = 0

−𝒒 [𝑿]
(
𝛿𝔘
𝛿𝒒

)𝑇
+

(
𝛿𝔘
𝛿𝒒

)𝑇
𝒒 [𝑿] = −𝝈𝑇

♯♭
for ð♭♯𝒒 = 0

1
2

(
𝝈♯♯ −𝝈𝑇

♯♯

)
= 1

2

(
𝝈♯♭ −𝝈𝑇

♯♭

)
for ðJ𝒒 = 0 .

Just as in the vector case, we point out that the gauge stress tensor depends on the syntactical description
of the energy, since 𝜕𝔘

𝜕𝑿 in (50) also depends on the syntax. For instance, a semantically equal energy
𝔘̃[𝑿, 𝑞11 [𝑿], 𝑞12 [𝑿], 𝑞21 [𝑿], 𝑞22 [𝑿]] =𝔘[𝑿, 𝒒 [𝑿]], with 𝒒 [𝑿] = 𝑞𝑖 𝑗 [𝑿]𝜕𝑖𝑿 ⊗𝜕 𝑗𝑿, gives a different
gauge stress tensor 𝝈̃ ≠ 𝝈.

3.3.4. Consequences for L2-Gradient Flows
The associated L2-gradient flow (𝑽 [𝑿],𝔇𝔱𝒒 [𝑿]) = −𝜆∇L2𝔘 can be formulated with various observer-
invariant instantaneous time derivative 𝔇𝔱 : T2S → T2S given in [41, Conclusion 7]. We treat in this
section the material ( ¤𝒒), upper-upper or fully-upper (𝔏♯♯𝒒), lower-lower or fully-lower (𝔏♭♭𝒒), upper-
lower (𝔏♯♭𝒒), lower-upper (𝔏♭♯𝒒) and Jaumann (𝔍𝒒) time derivative of a tangential 2-tensor field 𝒒. For
a material (Lagrange) observer, the material time derivative reads

¤𝒒 = (𝜕𝑡𝑞𝑖 𝑗 [𝑿])𝜕𝑖𝑿 ⊗ 𝜕 𝑗𝑿 +𝑮 [𝑿,𝑽 [𝑿]]𝒒 [𝑿] + 𝒒 [𝑿]𝑮𝑇 [𝑿,𝑽 [𝑿]]

= ΠT2S
𝑑

𝑑𝑡
𝒒 [𝑿] .

All other time derivatives can be derived from this one by

𝔇𝔱𝒒 [𝑿] = ¤𝒒 [𝑿] −𝚽1 [𝑿,𝑽 [𝑿]]𝒒 [𝑿] − 𝒒 [𝑿]𝚽𝑇
2 [𝑿,𝑽 [𝑿]] ,

where 𝚽1 = 0 𝑮 −𝑮𝑇 𝑮 −𝑮𝑇 𝑨
and 𝚽2 = 0 𝑮 −𝑮𝑇 −𝑮𝑇 𝑮 𝑨

for 𝔇𝔱𝒒 = ¤𝒒 𝔏♯♯𝒒 𝔏♭♭𝒒 𝔏♯♭𝒒 𝔏♭♯𝒒 𝔍𝒒 ,

see [41]. The time-depending solution (𝑿, 𝒒 [𝑿]) of the gradient flow yields the energy rate

𝑑

𝑑𝑡
𝔘 = −𝜆



∇L2𝔘


2

L2 (TR3 |S×T2S) (51)

+
〈
𝛿𝔘

𝛿𝒒
, (𝚽1 −𝚿1) [𝑿,𝑽 [𝑿]]𝒒 [𝑿] + 𝒒 [𝑿] (𝚽2 −𝚿2)𝑇 [𝑿,𝑽 [𝑿]]

〉
L2 (T2S)

. (52)

Therefore, a consistent choice of gauge and time derivative, i. e., (𝚿1,𝚿2) = (𝚽1,𝚽2) would ensure a
decreasing energy in the L2-gradient flow. This choice is also recommended, if we want the L2-gradient
flow to be consistent with Onsagers variational principle [13], cf. remark 4.

In section 4.3 we briefly mention an example for a Landau-de Gennes-Helfrich energy.



TANGENTIAL TENSOR FIELDS ON DEFORMABLE SURFACES 25

4. Examples

4.1. Examples for scalar fields

We here select several examples for scalar fields on deformable surfaces. They range from particle
density fields, e. g., protein interactions in viral capsides [4], colloids at fluid-fluid interfaces in
emulsions and bijels [2, 3] and adatoms on material surfaces [10, 52], to lipid and protein concentrations
in biomembranes [15, 16, 32, 62] and models for cell migration [25, 34], to applications on larger length
scales in materials science, e. g., dealloying by surface dissolution [14] or grain boundary diffusion [21].
The list can be extended to other contributions for these examples and further applications.

4.2. Minimizing a Frank-Oseen-Helfrich Energy

We consider a one-constant approximation of the surface Frank-Oseen(FO) energy, 𝔘∇ [𝑿, 𝒒 [𝑿]] +
𝔘𝑅 [𝑿, 𝒒 [𝑿]] [43], together with the Helfrich energy with vanishing spontaneous curvature, 𝔘𝐻 [𝑿],
[18]. The energies read:

𝔘[𝑿, 𝒒 [𝑿]] := 𝔘∇ [𝑿, 𝒒 [𝑿]] +𝔘𝑅 [𝑿, 𝒒 [𝑿]] +𝔘𝐻 [𝑿]

𝔘∇ [𝑿, 𝒒 [𝑿]] :=
𝐾

2
∥∇𝒒 [𝑿] ∥2

L2 (T2S)

𝔘𝑅 [𝑿, 𝒒 [𝑿]] :=
𝐾

2
∥𝑰𝑰[𝑿]𝒒 [𝑿] ∥2

L2 (TS) +
𝜔

4




∥𝒒 [𝑿] ∥2
TS −1




2

L2 (T0S)

𝔘𝐻 [𝑿] :=
𝜅

2
∥H [𝑿] ∥2

L2 (T0S)

with 𝐾,𝜔, 𝜅 > 0. The FO energy forces a solution 𝒒 [𝑿] ∈ TS to be parallel, aligned along lines of
minimal curvature, and to be normalized. For 𝜔→ ∞ such a solution can be interpreted as a (polar)
director field almost everywhere. Due to the Helfrich energy, the surface attempts to minimize its
mean curvature. For practical applications one might need to add constraints on area conservation,
see [44]. The unusual splitting of the FO energy into the ∇-part and 𝑅(emainder)-part is due to
the following calculation, in which we treat both parts differently. Equivalently, one could write
the elastic contributions, the two terms with paramter 𝐾 together as an extrinsic distortion energy
𝐾
2 ∥∇S𝒒 [𝑿] ∥2

L2 (TR3 |S⊗TS) containing the surface derivative (6), see [1]. Other related formulations are
considered in [28, 31, 39, 40, 57]. However, they all don’t consider 𝑿 as a degree of freedom.

The variations w. r. t. 𝒒 [𝑿] can be obtained in the usual way and read

𝛿𝔘∇
𝛿𝒒

= −𝐾Δ𝒒 [𝑿]

𝛿𝔘𝑅

𝛿𝒒
= 𝐾 𝑰𝑰2 [𝑿]𝒒 [𝑿] +𝜔

(
∥𝒒 [𝑿] ∥2

TS −1
)
𝒒 [𝑿]

in their strong formulations, where Δ := −∇† ◦∇ = div◦∇ is the Bochner-Laplace operator. The Helfrich
energy does not depend on 𝒒 [𝑿], and thus, 𝛿𝔘𝐻

𝛿𝒒 = 0.
Note that the overall energy has the form 𝔘[𝑿, 𝒒 [𝑿]] =

∫
S 𝑢[𝑿, 𝒒 [𝑿]]𝜇[𝑿] with an energy density

𝑢[𝑿, 𝒒 [𝑿]] ∈ T0S and due to this yields〈
𝛿𝔘

𝛿𝑿
,𝑾

〉
L2 (TR3 |S )

=

∫
S
ð𝑾 𝑢[𝑿, 𝒒 [𝑿]] +𝑢[𝑿, 𝒒 [𝑿]]Tr𝑮 [𝑿,𝑾]𝜇[𝑿] (53)
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as a consequence of ð𝑾 𝜇[𝑿] given in appendix B.1.1. This allows us to use deformation derivatives
to determine variations w. r. t. 𝑿 for such kind of energies. Moreover, we take advantage of (33), resp.
(34), which allows to variate the ∇- and 𝑅-part under certain gauges of surface independence and
obtain a general result. Note that the material deformation derivative ðS𝑾 is metric, resp. inner product,
compatible due to (42) and (B.2). Under the assumption of ðS𝒒 = 0 and with (B.6) the 𝑅-part yields

〈
𝛿𝔘𝑅

𝛿𝑿

���
ðS𝒒=0

,𝑾

〉
L2 (TR3 |S )

= 𝐾

〈
(ðS𝑾 𝑰𝑰[𝑿])𝒒 [𝑿], 𝑰𝑰[𝑿]𝒒 [𝑿]

〉
L2 (T2S)

+ ⟨𝑢𝑅 [𝑿, 𝒒 [𝑿]],Tr𝑮 [𝑿,𝑾]⟩L2 (T0S)

= 𝐾 ⟨𝑰𝑰[𝑿]𝒒 [𝑿] ⊗ 𝒒 [𝑿],∇𝒃[𝑿,𝑾]⟩L2 (T2S)

−
〈
𝐾 𝑰𝑰2 [𝑿]𝒒 [𝑿] ⊗ 𝒒 [𝑿] −𝑢𝑅 [𝑿, 𝒒 [𝑿]] IdTS ,𝑮 [𝑿,𝑾]

〉
L2 (T2S) .

where 𝑮 [𝑿,𝑾] ∈ T2S and 𝒃[𝑿,𝑾] ∈ TS are the effective tangential- and non-tangential-parts of the
surface gradient ∇S𝑾 ∈ T2R3 |S given in (13). Eventually by (34), we can state the gauge independent
partial variation

〈
𝜕𝔘𝑅

𝜕𝑿
,𝑾

〉
L2 (TR3 |S )

= −
〈
𝝈𝑅 + 𝝂[𝑿] ⊗ div𝝈𝑅,𝐾 ,∇S𝑾

〉
L2 (T2R3 |S ) (54)

with 𝝈𝑅 := 𝑰𝑰[𝑿]𝝈𝑅,𝐾 −𝑢𝑅 [𝑿, 𝒒 [𝑿]] IdTS ∈ T2S

and 𝝈𝑅,𝐾 := 𝐾 𝑰𝑰[𝑿]𝒒 [𝑿] ⊗ 𝒒 [𝑿] ∈ T2S .

The difficulty in the ∇-part is that spatial and deformation derivatives are not commuting in general.
But for ð♯𝒒 = 0, resp. ð𝑞𝑖 = 0, we can use that ð𝑾 𝜕𝑘𝑞

𝑖 [𝑿] = 0 as a consequence. With a detailed
calculation in appendix B.2, identity (34) and the upper-convected deformation derivative (24), we
obtain the gauge independent partial variation

〈
𝜕𝔘∇
𝜕𝑿

,𝑾

〉
L2 (TR3 |S )

=

〈
𝛿𝔘∇
𝛿𝑿

���
ð♯𝒒=0

,𝑾

〉
L2 (TR3 |S )

−
〈
𝛿𝔘∇
𝛿𝒒

⊗ 𝒒 [𝑿],𝑮 [𝑿,𝑾]
〉

L2 (T2S)

= −
〈
𝝈𝐸,𝐼 + 𝝂[𝑿] ⊗ 𝜼∇ ,∇S𝑾

〉
L2 (T2R3 |S ) (55)

where 𝝈𝐸,𝐼 = 𝐾
©­«(∇𝒒 [𝑿])𝑇∇𝒒 [𝑿] −

∥∇𝒒 [𝑿] ∥2
T2S

2
IdTS

ª®¬
and 𝜼∇ = 𝐾

(
(∇𝑰𝑰 [𝑿 ]𝒒 [𝑿])𝒒 [𝑿] −∇(𝑰𝑰 [𝑿 ]𝒒 [𝑿 ] )𝒒 [𝑿]

)
,

where 𝝈𝐸,𝐼 ∈ Q2S is the intrinsic, trace-free and symmetric Ericksen tensor.
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As a consequence of the local mean curvature deformation (B.7) and identity (53), the variation of
the Helfrich energy leads to〈
𝜕𝔘𝐻

𝜕𝑿
,𝑾

〉
L2 (TR3 |S )

= −𝜅
(
⟨∇H [𝑿], 𝒃[𝑿,𝑾]⟩L2 (TS) +

〈
H[𝑿]

(
𝑰𝑰[𝑿] − H [𝑿]

2
IdTS

)
,𝑮 [𝑿,𝑾]

〉
L2 (T2S)

)
= 𝜅

〈(
ΔH[𝑿] + H [𝑿]

2

(
H2 [𝑿] −4K[𝑿]

))
𝝂[𝑿],𝑾

〉
L2 (TR3 |S )

,

with the inner tangential component completely canceling out, since the shape-operator is curl-free,
i. e., div 𝑰𝑰[𝑿] = ∇H [𝑿]. It is not particularly surprising that a purely geometric measure induces
forces exclusively in the normals direction.

Finally, with surface divergence (9), the L2-gradient flow (37) containing the L2-gradient (36) yields

𝑽 [𝑿] = −divS
(
𝝈𝐹𝑂 −𝝈 + 𝝂[𝑿] ⊗ 𝜼𝐹𝑂

)
+ 𝑓𝐻𝝂[𝑿], 𝔇𝔱𝒒 [𝑿] = −𝛿𝔘

𝛿𝒒
, (56)

𝛿𝔘

𝛿𝒒
= −𝐾 (Δ𝒒 [𝑿] − 𝑰𝑰2 [𝑿]𝒒 [𝑿]) +𝜔

(
∥𝒒 [𝑿] ∥2

TS −1
)
𝒒 [𝑿] , (57)

with

𝝈𝐹𝑂 = 𝐾

(
(∇𝒒 [𝑿])𝑇∇𝒒 [𝑿] + 𝑰𝑰2 [𝑿]𝒒 [𝑿] ⊗ 𝒒 [𝑿]

)
−𝑢 IdTS ,

𝑢 =
𝐾

2

(
∥∇𝒒 [𝑿] ∥2

L2 (T2S) + ∥𝑰𝑰[𝑿]𝒒 [𝑿] ∥2
TS

)
+ 𝜔

4

(
∥𝒒 [𝑿] ∥2

TS −1
)2

,

𝜼𝐹𝑂 = 𝐾
(
(∇𝑰𝑰 [𝑿 ]𝒒 [𝑿])𝒒 [𝑿] −∇(𝑰𝑰 [𝑿 ]𝒒 [𝑿 ] )𝒒 [𝑿] +div(𝑰𝑰[𝑿]𝒒 [𝑿] ⊗ 𝒒 [𝑿])

)
,

𝑓𝐻 = −𝜅
(
ΔH[𝑿] + H [𝑿]

2

(
H2 [𝑿] −4K[𝑿]

))
(58)

a chosen time derivative 𝔇𝔱 : TS → TS (38) and a gauge stress tensor field 𝝈 ∈ T2S according to table
3 depending on the chosen gauge of surface independence. Note that we set the mobility parameter
𝜆 = 1.

For analytical reasons, we could also apply a tangential-normal-splitting on 𝛿𝔘
𝛿𝑿 . With the aid of

the splitting (9) of the surface divergence and orthogonal decomposition 𝑽 [𝑿] = 𝒗 [𝑿] + 𝑣⊥ [𝑿]𝝂[𝑿] ∈
TS ⊕ (T0S)𝝂[𝑿], we can represent the spatial evolution equation in (56) by

𝒗 [𝑿] = div𝝈 + 𝛿𝔘
𝛿𝒒

∇𝒒 [𝑿] , (59)

𝑣⊥ [𝑿] = ⟨𝝈−𝝈𝐸 , 𝑰𝑰[𝑿]⟩T2S −div𝜼𝐹𝑂 + 𝜔
4
H

(
∥𝒒 [𝑿] ∥2

TS −1
)2
+ 𝑓𝐻 , (60)

𝝈𝐸 = 𝐾ΠQ2S

(
(∇𝒒 [𝑿])𝑇∇𝒒 [𝑿] + 𝑰𝑰[𝑿]𝒒 [𝑿] ⊗ 𝑰𝑰[𝑿]𝒒 [𝑿]

)
as a consequence of Weitzenböck-identity, Gauss-identity and curl-freeness of the second fundamental
form. The tensor 𝝈𝐸 ∈ Q2S < T2S is called the trace-free surface Ericksen-stress [44]. This tensor
occurs similarly in flat hydrodynamic liquid crystal models, e. g., in [30]. To make the comparison
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easier we could use the identity 𝝈𝐸

𝐾
+ 𝑝𝐸 IdTS = (∇S𝒒 [𝑿])𝑇∇S𝒒 [𝑿], where 𝑝𝐸 =

∥∇S𝒒 [𝑿 ] ∥2

2 can be
included into a generalized pressure term.

In [44] (a preprint of [45]) a similar L2-gradient flow is given for the material gauge of surface
independence and material time derivative, but restricted to evolutions in normal direction. The
calculated L2-gradient flow and energy rate equals our equations (56)(right)+(60) and energy rate
(40) for the given restriction, neglecting the surface area penalization part. It should be noted for
the comparison that div𝜼𝐹𝑂 = 𝐾 div((∇𝒒 [𝑿 ]H[𝑿] + 2∇𝑰𝑰 [𝑿 ]𝒒 [𝑿])𝒒 [𝑿]) holds, according to [44,
Proposition B.1.].

The fact that the choice of the gauge of surface independence and the observer-invariant time
derivative for the L2-gradient flow (𝑽 [𝑿],𝔇𝔱𝒒 [𝑿]) = −𝜆∇L2𝔘 (37) has an impact on its solution,
can be seen from the energy rate (40) alone. In order to demonstrate the differences we simplify the
problem. Certainly the curvature of a surface is a large factor, but the fundamental connection between
the dynamic of a gradient flow system and the gauge of surface independence or time derivative is not
curvature driven. We therefore use an initial condition, which ensures flatness of the surface, namely
𝑰𝑰[𝑿] |𝑡=0 = 0 and 𝑣⊥ [𝑿] |𝑡=0 = ⟨𝑽 [𝑿], 𝝂[𝑿]⟩TR3 |S |𝑡=0 = 0. These flatness-symmetry conditions are
preserved in time, since the only force in normal direction is the vanishing part (60). As a conserquence
the Helfrich energy no longer contributes. Therefore the gradient flow only comprises the tangential
equation (59). This yields the reduced equations of motion

𝒗 [𝑿] = div𝝈 + 𝛿𝔘
𝛿𝒒

∇𝒒 [𝑿] , 𝔇𝔱𝒒 [𝑿] = −𝛿𝔘
𝛿𝒒

, (61)

𝛿𝔘

𝛿𝒒
= −𝐾Δ𝒒 [𝑿] +𝜔

(
∥𝒒 [𝑿] ∥2

TS −1
)
𝒒 [𝑿]

with a choice of time derivatives (38) and gauge stress tensors 𝝈 ∈ T2S given in table 3. The initial
surface is a rectangle with opposing periodic boundaries, see figure 4 (top left), i. e., it can be seen as
a flat torus or an infinite plane with a periodic pattern. To keep track of local deformations, we use the
material parameterization approach 𝑿 (𝑡, 𝑦1, 𝑦2) = [𝑦1 + 𝑓 1(𝑡, 𝑦1, 𝑦2), 𝑦2 + 𝑓 2(𝑡, 𝑦1, 𝑦2),0]𝑇 = [𝑥, 𝑦, 𝑧]𝑇
with 𝑓 1(0, 𝑦1, 𝑦2) = 𝑓 2(0, 𝑦1, 𝑦2) = 0, i. e., the observer is taken the Lagrange-perspective and 𝑓 1,
resp. 𝑓 2, describe the local deformation in 𝑥-, resp. 𝑦-direction, of the initial rectangle. We assume
that the initial condition for 𝒒 [𝑿] |𝑡=0 = (𝑞𝑖 [𝑿]𝜕𝑖𝑿) |𝑡=0 ∈ TS|𝑡=0 bears the same periodicity as the
surface. Moreover, we stipulate that 𝒒 [𝑿] |𝑡=0 is constant along 𝑦1-coordinate lines. Since also the
parameterization sustains the same symmetry, the model (61) preserve the independency of 𝑦1 in
time. This has the advantage, that a spatial discretization has to be done along 𝑦2 only. Eventually,
our degrees of freedom are { 𝑓 1 (𝑡, 𝑦2), 𝑓 2(𝑡, 𝑦2), 𝑞1 [𝑿] (𝑡, 𝑦2), 𝑞2 [𝑿] (𝑡, 𝑦2)} for all 𝑦2 and 𝑡 in their
considered domains under the discussed initial conditions above. The minimal state of 𝔘 comprises a
spatially parallel vector field with constant length. Since the periodic surface is topologically equivalent
to a torus, i. e., the Euler characteristic is 𝜒(S) = 0, this minimal states do not contain any defects.
Therefore, a stationary minimal solution depends neither on the gauge of surface independence nor on
a time derivative. But out of this state of equilibrium, the force 𝛿𝔘

𝛿𝑿 clearly depends on the gauge as
well as the dynamic counterpart of 𝛿𝔘

𝛿𝒒 depends the choice of time derivative. The big impact of these
choices on the evolution of (61) can be seen in figure 4. For consistent choices, all models evolve to a
minimal state, where 𝔘 is vanishing, but the paths are differently and so the final surface.

The highly nonlinear equations (61) is discretized by an implicit Euler scheme in time, where
we linearize all terms by one step Taylor expansion at the old time step. We use FDM with central
differential quotients for any order of spatial derivatives. Solving the resulting discrete linear system



TANGENTIAL TENSOR FIELDS ON DEFORMABLE SURFACES 29

is done with the UMFPACK library in every time step. Unfortunately, it was only possible to get stable
solutions for a consistent choice of gauge and time derivative with this proceeding. Therefore, the
energy rate (40) becomes 𝑑

𝑑𝑡
𝔘 = −𝜆



∇L2𝔘


2

L2 (TR3 |S×TS) ≤ 0, i. e., the analytical solutions guarantee
dissipation. This is also reflected by the numerical solutions, see figure 4.

4.3. Minimizing Landau-de Gennes-Helfrich Energy

A L2-gradient flow is given in [45] for the Landau-de Gennes-Helfrich energy, where 𝒒 [𝑿] ∈ Q2S <

T2S is a trace-free and symmetric 2-tensor field and surface deformations are restricted to deformations
in normal direction. The corresponding surface energy 𝔘[𝑿, 𝒒 [𝑿]] was derived as a thin film limit of
a three-dimensional energy [42]. The resulting equations of motion are formulated under the material
gauge of surface independence and with the material time derivative. The calculated energy rate also
fits the energy rate (52) for the given restrictions.

5. Conclusions

Tangential tensor fields are usually defined on their underlying surface. However, if the surface smoothly
changes, the field also has to be defined on the deformed surface, e.g., through various pushforwards.
The linear change of these definitions is quantified by the so-called deformation derivatives and can be
seen as local domain variations of the first kind of the fields. Similarly to time derivatives, deformation
derivatives can be defined in different ways. We presented one for scalar fields, four for tangential
vector fields, and six for tangential 2-tensor fields. With these deformation derivatives, we can quantify
what it means for a tensor field to be independent of the underlying surface, which leads to different
definitions of the gauges of surface independence, where deformation derivatives vanish for all possible
deformations of the surface. For non-scalar fields, further possibilities exist to define deformation
derivatives and thus gauges of surface independence. However, those chosen already cover a wide
range of physically meaningful applications. Moreover, we disregard handling 𝑛-tensor fields for 𝑛 > 2
for reasons of space. It does not pose any difficulties to do it for fixed 𝑛 in the same way as for 𝑛 = 1,2,
although it becomes quite technical for general tensor orders. Potential applications are hexatic orders
(𝑛 = 6) in confluent cell layers [6] or quad mesh generation (𝑛 = 4) in computer graphics [9]. Also,
an extension to 𝑑-dimensional hypersurfaces smoothly embedded in a higher-dimensional Euclidean
space, with co-dimension greater than one, should not pose a major challenge.

We see the primary application for the gauges of surface independence in the derivation of L2-
gradient flows of energies, where the phase space comprises the surface itself among tensor quantities
defined on it. In order to guarantee a decreasing energy in the L2-gradient flow, the time derivative
and the gauge of surface independence have to be chosen consistently. The choice should thereby
follow physical arguments. We suggest imagining how the considered tensor field would act under
force-free transport and selecting a time derivative and a gauge of surface independence that fit the
expected physical behavior, see, e.g., [41]. Another possibility is to contemplate a physically suitable
pushforward for the tensor field, as its linear information determines a gauge of surface independence.
Both provide a systematic way to select an appropriate L2-gradient flow.

Note that equilibrium states, stable or not, are independent of the choice of the gauge of surface
independence, see the discussion above (37). But in many situations, these states are not unique.
Therefore, steepest descent methods, like the L2-gradient flow, which approach the equilibrium
state from non-equilibrium states, can give quite different results for different gauges of surface
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independence. This dependence on the gauge of surface independence has been shown by an example
in section 4.2.

Besides these physical implications, this work also provides some helpful tools for variations of
the first kind. Identity (33), and its special case (32), allow for variation under a specific gauge of
surface independence, even though the tensor field actually obeys a different gauge. We used this for
the example in section 4.2 to circumvent calculating all commutators with respect to the covariant
spatial and deformation derivative. Instead, we could derive the variation only for a single gauge, which
seems to simplify the situation, and concluded on the general case afterward. We’d like to mention that
the total variation 𝜕𝔘

𝜕𝑿 , deformation derivatives, and hence also the gauges, follow a general principle of
covariance, i.e., they are independent of their syntactical description, e.g., partial dependencies in 𝔘 or
coordinate dependencies. Contrarily, the strong formulation of the L2-gradient (36), in terms of partial
variation and gauge stress, is certainly helpful, but both summands have to be interpreted in the context
of the syntax of 𝔘. We showed in Appendices A.1 and A.2 that this has no influence on the left-hand
side of (36).

A. Alternative Proceedings

A.1. Contravariant Proxy Approach to (32)

Instead of considering tangential vector fields 𝒒 [𝑿] ∈ TS together with an associated frame, some
readers may prefer to use the contravariant proxy field {𝑞𝑖 [𝑿]} ∈ (T0S)2, where in case of an
embedding with parameterization 𝑿 holds 𝑞𝑖 [𝑿]𝜕𝑖𝑿 = 𝒒 [𝑿], resp. 𝑞𝑖 [𝑿] = 𝑔𝑖 𝑗 [𝑿]

〈
𝒒 [𝑿], 𝜕 𝑗𝑿

〉
TS .

Therefore, we can rewrite the energy 𝔘 in section 3.2.2 by

𝔘̃[𝑿, 𝑞1 [𝑿], 𝑞2 [𝑿]] := 𝔘[𝑿, 𝒒 [𝑿]] (A.1)

without changing the sematic of U. The great advantage of total derivations, such as the total variation
(27), is that they are syntactical invariant, i. e., the total variation〈

𝛿𝔘̃

𝛿𝑿
,𝑾

〉
:= lim

𝜀→0

𝔘̃[𝑿 + 𝜀𝑾, 𝑞1 [𝑿 + 𝜀𝑾], 𝑞2 [𝑿 + 𝜀𝑾]] − 𝔘̃[𝑿, 𝑞1 [𝑿], 𝑞2 [𝑿]]
𝜀

in an arbitrary direction 𝑾 ∈ TR3 |S equals
〈
𝛿𝔘
𝛿𝑿 ,𝑾

〉
(27) as we can easily see by substitution (A.1). The

total variations w. r. t. contravariant proxy components in direction of arbitrary scalar fields 𝑓 ∈ T0S are〈
𝛿𝔘̃

𝛿𝑞1 , 𝑓

〉
:= lim

𝜀→0

𝔘̃[𝑿, 𝑞1 [𝑿] + 𝜀 𝑓 , 𝑞2 [𝑿]] − 𝔘̃[𝑿, 𝑞1 [𝑿], 𝑞2 [𝑿]]
𝜀

,〈
𝛿𝔘̃

𝛿𝑞2 , 𝑓

〉
:= lim

𝜀→0

𝔘̃[𝑿, 𝑞1 [𝑿], 𝑞2 [𝑿] + 𝜀 𝑓 ] − 𝔘̃[𝑿, 𝑞1 [𝑿], 𝑞2 [𝑿]]
𝜀

.

Since 𝔘[𝑿, 𝒒 [𝑿] + 𝜀𝒓] = 𝔘̃[𝑿, 𝑞1 [𝑿] + 𝜀𝑟1, 𝑞2 [𝑿] + 𝜀𝑟2] is valid for an arbitrary tangential field 𝒓 =
𝑟 𝑖𝜕𝑖𝑿 ∈ TS, the relation to the total variation (28) is〈

𝛿𝔘

𝛿𝒒
, 𝒓

〉
=

〈
𝛿𝔘̃

𝛿𝑞1 , 𝑟
1

〉
+
〈
𝛿𝔘̃

𝛿𝑞2 , 𝑟
2

〉
=

〈
𝛿𝔘̃

𝛿𝑞𝑖
, 𝑟 𝑖

〉
.
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To get a decomposition as (32) to separate determined and not determined parts, the proceeding is
almost the same. We use a Taylor expansion with a reasonable pushforward for scalar fields, i. e., it
holds

𝑞𝑖 [𝑿 + 𝜀𝑾] = (𝑞𝑖 [𝑿])∗𝜀𝑾 + 𝜀(ð𝑾 𝑞
𝑖 [𝑿])∗𝜀𝑾 +O(𝜀2)

∀ 𝑓 ∈ T0S : 𝑓 ∗𝜀𝑾 (𝑦1, 𝑦2) := 𝑓 (𝑦1, 𝑦2) ∈ T0
(𝑿+𝜀𝑾 ) (𝑦1 ,𝑦2 )S𝜀𝑾 (A.2)

with scalar-valued deformation derivative ð𝑾 : T0S → T0S (17). Another Taylor expansion and
exploiting the vector space structure of an consistently chosen Hilbert space gives

𝔘̃[𝑿 + 𝜀𝑾, 𝑞1 [𝑿 + 𝜀𝑾], 𝑞2 [𝑿 + 𝜀𝑾]]

= 𝔘̃[𝑿 + 𝜀𝑾, (𝑞1 [𝑿])∗𝜀𝑾 , (𝑞2 [𝑿])∗𝜀𝑾 ]

+ 𝜀
〈

𝛿𝔘̃

𝛿(𝑞𝑖)∗𝜀𝑾 , (ð𝑾 𝑞
𝑖 [𝑿])∗𝜀𝑾

〉
L2 (T0S𝜀𝑾 )

+O(𝜀2) .

Since ∗𝜀𝑾 → IdT0S is valid for 𝜀→ 0, we obtain the total variation〈
𝛿𝔘̃

𝛿𝑿
,𝑾

〉
L2 (TR3 |S )

=

〈
𝜕𝔘̃

𝜕𝑿
,𝑾

〉
L2 (TR3 |S )

+
〈
𝛿𝔘̃

𝛿𝑞𝑖
,ð𝑾 𝑞

𝑖 [𝑿]
〉

L2 (T0S)
(A.3)

by defining the partial variation〈
𝜕𝔘̃

𝜕𝑿
,𝑾

〉
:= lim

𝜀→0

𝔘̃[𝑿 + 𝜀𝑾, (𝑞1 [𝑿])∗𝜀𝑾 , (𝑞2 [𝑿])∗𝜀𝑾 ] − 𝔘̃[𝑿, 𝑞1 [𝑿], 𝑞2 [𝑿]]
𝜀

.

In praxis this means to differentiate everything of the energy w. r. t. 𝑿 except contravariant proxy
components of 𝒒 [𝑿], e. g., in the term

∫
S ∥𝒒 [𝑿] ∥2𝜇[𝑿] =

∫
S 𝑔𝑖 𝑗 [𝑿]𝑞

𝑖 [𝑿]𝑞 𝑗 [𝑿]𝜇[𝑿] has only 𝑔𝑖 𝑗 [𝑿]
and 𝜇[𝑿] to be differentiated. Moreover, comparing with (32) reveals〈

𝜕𝔘̃

𝜕𝑿
,𝑾

〉
L2 (TR3 |S )

=

〈
𝜕𝔘

𝜕𝑿
,𝑾

〉
L2 (TR3 |S )

+
〈
𝛿𝔘

𝛿𝒒
,𝑮 [𝑿,𝑾]𝒒 [𝑿]

〉
L2 (TS)

,〈
𝛿𝔘̃

𝛿𝑞𝑖
,ð𝑾 𝑞

𝑖 [𝑿]
〉

L2 (T0S)
=

〈
𝛿𝔘

𝛿𝒒
,ð
♯

𝑾 𝒒 [𝑿]
〉

L2 (TS)

=

〈
𝛿𝔘

𝛿𝒒
,ðS𝑾 𝒒 [𝑿] −𝑮 [𝑿,𝑾]𝒒 [𝑿]

〉
L2 (TS)

.

This also affects the L2-gradient (36) in section 3.2.4, which becomes

∇L2𝔘̃ =

(
𝛿𝔘̃

𝛿𝑿
,

{
𝛿𝔘̃

𝛿𝑞𝑖

})
=

(
𝜕𝔘̃

𝜕𝑿
−divT2S 𝝈̃,

{
𝛿𝔘̃

𝛿𝑞𝑖

})
, (A.4)

where 𝝈̃ = 𝝈− 𝛿𝔘
𝛿𝒒 ⊗ 𝒒 [𝑿] ∈ T2S is given in table 3 depending on the chosen gauge.
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A.2. Approach to (32) with explicit covariant metric proxy

Some readers would like to include the covariant metric proxy {𝑔𝑖 𝑗 [𝑿]} = {
〈
𝜕𝑖𝑿, 𝜕 𝑗𝑿

〉
TR3 |S } ∈

(T0S)2×2, so that the energy 𝔘 can be rewritten as

𝔘̂[𝑿, 𝒒 [𝑿], {𝑔𝑖 𝑗 [𝑿]}] := 𝔘[𝑿, 𝒒 [𝑿]]

without changing the sematic of U. The total variation〈
𝛿𝔘̂

𝛿𝑿
,𝑾

〉
:= lim

𝜀→0

𝔘̂[𝑿 + 𝜀𝑾, 𝒒 [𝑿 + 𝜀𝑾], {𝑔𝑖 𝑗 [𝑿] + 𝜀𝑾}] − 𝔘̂[𝑿, 𝒒 [𝑿], {𝑔𝑖 𝑗 [𝑿]}]
𝜀

w. r. t. 𝑿 in arbitrary directions of 𝑾 ∈ TR3 |S equals
〈
𝛿𝔘
𝛿𝑿 ,𝑾

〉
(27) as expected for a total derivative.

Also the total variation〈
𝛿𝔘̂

𝛿𝒒
, 𝒓

〉
:= lim

𝜀→0

𝔘̂[𝑿, 𝒒 [𝑿] + 𝜀𝒓, {𝑔𝑖 𝑗 [𝑿]}] − 𝔘̂[𝑿, 𝒒 [𝑿], {𝑔𝑖 𝑗 [𝑿]}]
𝜀

w. r. t. 𝒒 [𝑿] in arbitrary directions of 𝒓 ∈ TS equals
〈
𝛿𝔘
𝛿𝒒 , 𝒓

〉
(28). The Taylor expansion

𝑔𝑖 𝑗 [𝑿 + 𝜀𝑾] = (𝑔𝑖 𝑗 [𝑿])∗𝜀𝑾 + 𝜀(𝑆𝑖 𝑗 [𝑿,𝑾])∗𝜀𝑾 +O(𝜀2)

with scalar-valued pushforward ∗𝜀𝑾 : T0S → T0S𝜀𝑾 (A.2) yields

𝔘̂[𝑿 + 𝜀𝑾, 𝒒 [𝑿 + 𝜀𝑾], {𝑔𝑖 𝑗 [𝑿 + 𝜀𝑾]}]

= 𝔘̂[𝑿 + 𝜀𝑾,ΠTS𝜀𝑾 (𝒒 [𝑿])∗𝜀𝑾 , {(𝑔𝑖 𝑗 [𝑿])∗𝜀𝑾 }]

+ 𝜀
〈

𝛿𝔘̂

𝛿(ΠTS𝜀𝑾 𝒒∗𝜀𝑾 ) ,ΠTS𝜀𝑾

(
ð𝑾 𝒒 [𝑿]

)∗𝜀𝑾 〉
L2 (TS𝜀𝑾 )

+ 𝜀
〈
𝜕𝔘̂

𝜕𝑔
∗𝜀𝑾
𝑖 𝑗

, (𝑆𝑖 𝑗 [𝑿,𝑾])∗𝜀𝑾
〉

L2 (T0S𝜀𝑾 )
+O(𝜀2) ,

where ∗𝜀𝑾 on vector fields applies R3-component-wise, see (29). For partial variations w. r. t. metric
components see (A.6) below, but on S𝜀𝑾 instead. Since ∗𝜀𝑾 → Id on their respective spaces and
ΠTS𝜀𝑾 → ΠTS for 𝜀→ 0, we obtain〈

𝛿𝔘̂

𝛿𝑿
,𝑾

〉
L2 (TR3 |S )

=

〈
𝜕𝔘̂

𝜕𝑿
,𝑾

〉
L2 (TR3 |S )

+
〈
𝛿𝔘̂

𝛿𝒒
,ðS𝑾 𝒒 [𝑿]

〉
L2 (TS)

+
〈
𝜕𝔘̂

𝜕𝑔𝑖 𝑗
, 𝑆𝑖 𝑗 [𝑿,𝑾]

〉
L2 (T0S)

, (A.5)
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where the partial variations w. r. t. covariant metric proxy components in direction of scalar fields 𝑓 ∈ TS
are defined by 〈

𝜕𝔘̂

𝜕𝑔𝑖 𝑗
, 𝑓

〉
:= lim

𝜀→0

𝔘̂[𝑿, 𝒒 [𝑿], {𝑔𝑖 𝑗 [𝑿] + 𝜀 𝑓 }] − 𝔘̂[𝑿, 𝒒 [𝑿], {𝑔𝑖 𝑗 [𝑿]}]
𝜀

(A.6)

and the partial variation w. r. t.𝑿 in directions of 𝑾 ∈ TR3 |S by〈
𝜕𝔘̂

𝜕𝑿
,𝑾

〉
:= lim

𝜀→0

1
𝜀

(
𝔘̂[𝑿 + 𝜀𝑾,ΠTS𝜀𝑾 (𝒒 [𝑿])∗𝜀𝑾 , {(𝑔𝑖 𝑗 [𝑿])∗𝜀𝑾 }]

− 𝔘̂[𝑿, 𝒒 [𝑿], {𝑔𝑖 𝑗 [𝑿]}]
)

.

In praxis this means to differentiate everything of the energy w. r. t. 𝑿 except for 𝒒 [𝑿] (incl. its frame)
and explicit terms of 𝑔𝑖 𝑗 [𝑿], e. g., in the term

∫
S ∥𝒒 [𝑿] ∥2𝜇[𝑿] =

∫
S ∥𝒒 [𝑿] ∥2𝜇[{𝑔𝑖 𝑗 [𝑿]}] nothing has

to be differentiated, i. e.,
〈
𝜕𝔘̂
𝜕𝑿 ,𝑾

〉
= 0. Moreover, comparing with (32) reveals〈

𝜕𝔘̂

𝜕𝑿
,𝑾

〉
L2 (TR3 |S )

+
〈
𝜕𝔘̂

𝜕𝑔𝑖 𝑗
, 𝑆𝑖 𝑗 [𝑿,𝑾]

〉
L2 (T0S)

=

〈
𝜕𝔘

𝜕𝑿
,𝑾

〉
L2 (TR3 |S )

and
〈
𝛿𝔘̂
𝛿𝒒 ,ð

S
𝑾 𝒒 [𝑿]

〉
L2 (TS)

=

〈
𝛿𝔘
𝛿𝒒 ,ð

S
𝑾 𝒒 [𝑿]

〉
L2 (TS)

as expected for a total derivative w. r. t. same

arguments. Note that we could substitute
〈
𝜕𝔘̂
𝜕𝑔𝑖 𝑗

, 𝑆𝑖 𝑗 [𝑿,𝑾]
〉

L2 (T0S)
=

〈
𝜕𝔘̂
𝜕𝑔𝑖 𝑗

,𝐺𝑖 𝑗 [𝑿,𝑾]
〉

L2 (T0S)
due to

symmetry.

B. Outsourced Calculations

B.1. Deformation Derivative on Geometrical Quantities

B.1.1. Metric Tensor, its Inverse and Density
With the metric tensor proxy, given by 𝑔𝑖 𝑗 [𝑿] =

〈
𝜕𝑖𝑿, 𝜕 𝑗𝑿

〉
TR3 |S , contravariant proxy components

𝐺𝑖 𝑗 [𝑿,𝑾] (10) of the tangential derivative of deformation direction 𝑾 ∈ TR3 |S and the symmetric
part 𝑆𝑖 𝑗 [𝑿,𝑾], the deformation derivative (17) on scalar fields yields

ð𝑾 𝑔𝑖 𝑗 [𝑿] =
〈
𝜕𝑖𝑾, 𝜕 𝑗𝑿

〉
TR3 |S +

〈
𝜕𝑖𝑿, 𝜕 𝑗𝑾

〉
TR3 |S = 𝐺𝑖 𝑗 [𝑿,𝑾] +𝐺 𝑗𝑖 [𝑿,𝑾]

= 2𝑆𝑖 𝑗 [𝑿,𝑾] . (B.1)

Due to this, the inverse tensor proxy gives

ð𝑾 𝑔
𝑖 𝑗 [𝑿] = ð𝑾

(
𝑔𝑖𝑘 [𝑿]𝑔 𝑗𝑙 [𝑿]𝑔𝑘𝑙 [𝑿]

)
= 2ð𝑾 𝑔

𝑖 𝑗 [𝑿] +2𝑆𝑖 𝑗 [𝑿,𝑾]

= −2𝑆𝑖 𝑗 [𝑿,𝑾] (B.2)

and the density value
√︁
|𝒈 | [𝑿] :=

√︁
det𝒒 [𝑿] ∈ T0S yields

ð𝑾
√︁
|𝒈 | [𝑿] =

√︁
|𝒈 | [𝑿]Tr𝑮 [𝑿,𝑾] ,
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resp. ð𝑾 𝜇[𝑿] = Tr𝑮 [𝑿,𝑾]𝜇[𝑿], where 𝜇[𝑿] =
√︁
|𝒈 | [𝑿]𝑑𝑦1∧𝑑𝑦2 � 𝑬 [𝑿]. It is noteworthy that both

the Jaumann and material deformation derivative are metric-compatible, i. e., the tangential field identity
map [IdTS]𝑖 𝑗 = 𝑔𝑖 𝑗 yields

ðS𝑾 IdTS = ðJ𝑾 IdTS = 0 .

This follows from [ð♭♭𝑾 IdTS]𝑖 𝑗 = ð𝑾 𝑔𝑖 𝑗 [𝑿], [ð
♯♯

𝑾 IdTS]𝑖 𝑗 = ð𝑾 𝑔
𝑖 𝑗 [𝑿], (46) and (45). As a consequence

we get trace-compatibility for all 𝒒 [𝑿] ∈ T2S:

ð𝑾 Tr𝒒 [𝑿] = ð𝑾
〈
𝒒 [𝑿], IdTS

〉
T2S = TrðS𝑾 𝒒 [𝑿] = TrðJ𝑾 𝒒 [𝑿] . (B.3)

B.1.2. Christoffel Symbols
With Christoffel symbols of first kind (5) and contravariant proxy components 𝐺𝑖 𝑗 [𝑿,𝑾] (10) of the
tangential derivative of deformation direction 𝑾 ∈ TR3 |S , the deformation derivative (17) on scalar
fields yields

ð𝑾 Γ 𝑗𝑘𝑙 [𝑿] =
〈
𝜕 𝑗𝜕𝑘𝑾, 𝜕𝑙𝑿

〉
TR3 |S +

〈
𝜕 𝑗𝜕𝑘𝑿, 𝜕𝑙𝑾

〉
TR3 |S

= 𝜕 𝑗𝐺𝑙𝑘 [𝑿,𝑾] −
〈
𝜕 𝑗𝜕𝑙𝑿, 𝜕𝑘𝑾

〉
TR3 |S +

〈
𝜕 𝑗𝜕𝑘𝑿, 𝜕𝑙𝑾

〉
TR3 |S

The full surface gradient ∇S𝑾 = 𝑔𝑖𝑙 (𝜕𝑙𝑾) ⊗ 𝜕𝑖𝑿 ∈ TR3 |S ⊗ TS is given in (13), resp. (11) in
components. The covariant Hessian components of 𝑿 reads 𝜕 𝑗𝜕𝑘𝑿 = Γ𝑚

𝑗𝑘
[𝑿]𝜕𝑚𝑿 + 𝐼𝐼 𝑗𝑘 [𝑿]𝝂[𝑿].

Therefore, we obtain〈
𝜕 𝑗𝜕𝑘𝑿, 𝜕𝑙𝑾

〉
TR3 |S = Γ𝑚𝑗𝑘 [𝑿]𝐺𝑚𝑙 [𝑿,𝑾] + 𝑏𝑙 [𝑿,𝑾] 𝐼𝐼 𝑗𝑘 [𝑿] ,

where 𝒃[𝑿,𝑾] = ∇𝑤⊥ [𝑿] + 𝑰𝑰[𝑿]𝒘 [𝑿] ∈ TS determines the normal-tangential part of ∇S𝑾, see
(14). Summing all things up and using the deformation of the inverse metric in (B.2), the deformation
derivative of the Christoffel symbols of second kind yields

ð𝑾 Γ𝑖𝑗𝑘 [𝑿] = ð𝑾
(
𝑔𝑖𝑙 [𝑿]Γ 𝑗𝑘𝑙 [𝑿]

)
= 𝑔𝑖𝑙ð𝑾 Γ 𝑗𝑘𝑙 [𝑿] −2𝑆𝑖𝑙 [𝑿,𝑾]Γ 𝑗𝑘𝑙 [𝑿]

= 𝐺𝑖
𝑘 | 𝑗 [𝑿,𝑾] + 𝑏𝑖 [𝑿,𝑾] 𝐼𝐼 𝑗𝑘 [𝑿] − 𝑏𝑘 [𝑿,𝑾] 𝐼𝐼 𝑖𝑗 [𝑿] . (B.4)

B.1.3. Normals Field
The deformation derivative ð𝑾 𝝂[𝑿] = (ð𝑾 𝜈

𝐼 [𝑿])𝒆𝐼 ∈ TS is tangential, since ð𝑾 obeys the product
rule w. r. t. the local inner product and the normals field 𝝂[𝑿] ∈ TR3 |S is normalized. Therefore, with
(12) and (14), we can simply calculate

ð𝑾 𝝂[𝑿] = 𝑔𝑖 𝑗 [𝑿]
〈
ð𝑾 𝝂[𝑿], 𝜕 𝑗𝑿

〉
TR3 |S 𝜕𝑖𝑿 = −𝑔𝑖 𝑗 [𝑿]

〈
𝝂[𝑿], 𝜕 𝑗𝑾

〉
TR3 |S 𝜕𝑖𝑿

= − (∇𝑤⊥ [𝑿] + 𝑰𝑰[𝑿]𝒘 [𝑿]) = −𝒃[𝑿,𝑾] . (B.5)

B.1.4. Second Fundamental Form
With the deformation derivative (B.5) of the normal field and the normal part of the gradient of 𝑾 in
(12), the deformation derivative (17) of the covariant proxy components (3) of the second fundamental
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form yields

ð𝑾 𝐼𝐼𝑖 𝑗 [𝑿] =
〈
𝜕 𝑗𝜕𝑖𝑾, 𝝂[𝑿]

〉
TR3 |S −

〈
𝜕 𝑗𝜕𝑖𝑿, 𝒃[𝑿,𝑾]

〉
TR3 |S

= 𝜕 𝑗 ⟨𝜕𝑖𝑾, 𝝂[𝑿]⟩TR3 |S +
〈
𝜕𝑖𝑾, 𝐼𝐼

𝑘
𝑗 [𝑿]𝜕𝑘𝑿

〉
TR3 |S

−Γ𝑘𝑖 𝑗 [𝑿]𝑏𝑘 [𝑿,𝑾]

= 𝑏𝑖 | 𝑗 [𝑿,𝑾] +𝐺𝑘𝑖 [𝑿,𝑾] 𝐼𝐼𝑘𝑗 [𝑿] =
[
∇𝒃[𝑿,𝑾] +𝑮𝑇 [𝑿,𝑾] 𝑰𝑰[𝑿]

]
𝑖 𝑗

.

Since
[
ð♭♭𝑾 𝑰𝑰[𝑿]

]
𝑖 𝑗
= ð𝑾 𝐼𝐼𝑖 𝑗 [𝑿] is valid by (43), the relation (44) to the material deformation derivative

(42) results in

ðS𝑾 𝑰𝑰[𝑿] = ∇𝒃[𝑿,𝑾] − 𝑰𝑰[𝑿]𝑮 [𝑿,𝑾] . (B.6)

As a consequence of trace-compatibility (B.3), the deformation derivative of the mean curvature
H[𝑿] = Tr 𝑰𝑰[𝑿] yields

ð𝑾H[𝑿] = div 𝒃[𝑿,𝑾] − ⟨𝑰𝑰[𝑿],𝑮 [𝑿,𝑾]⟩T2S . (B.7)

B.2. Calculations for Example 4.2

The deformation derivative (B.4) of Christoffel symbols and the upper-lower deformation derivative in
(43) yields

[
ð
♯♭

𝑾∇𝒒 [𝑿]
��
ð♯𝒒=0

] 𝑖
𝑘
= ð𝑾 𝑞

𝑖
|𝑘 [𝑿]

��
ð♯𝒒=0 = 𝑞

𝑗 [𝑿]ð𝑾 Γ𝑖𝑘 𝑗 [𝑿]

=
[
∇𝒒 [𝑿 ]𝑮 [𝑿,𝑾] − 𝑰𝑰[𝑿]𝒒 [𝑿] ⊗ 𝒃[𝑿,𝑾]

+ 𝒃[𝑿,𝑾] ⊗ 𝑰𝑰[𝑿]𝒒 [𝑿]
] 𝑖
𝑘

,

since ð𝑾 𝜕𝑘𝑞
𝑖 [𝑿] = 0 is valid for ð𝑞𝑖 = 0. Using the relation (44) between the material and the upper-

lower deformation derivative and the identity

∇𝒒 [𝑿 ]𝑮 [𝑿,𝑾] − 𝑰𝑰[𝑿]𝒒 [𝑿] ⊗ 𝒃[𝑿,𝑾]

= 𝒒 [𝑿]∇𝑮𝑇 [𝑿,𝑾] − ⟨𝒒 [𝑿], 𝒃[𝑿,𝑾]⟩TS 𝑰𝑰[𝑿] ,

we can relate this to the material deformation derivative (42) by

ðS𝑾∇𝒒 [𝑿]
��
ð♯𝒒=0 = 𝒒 [𝑿]∇𝑮𝑇 [𝑿,𝑾] +𝑮 [𝑿,𝑾]∇𝒒 [𝑿] − (∇𝒒 [𝑿])𝑮 [𝑿,𝑾]

− ⟨𝒒 [𝑿], 𝒃[𝑿,𝑾]⟩TS 𝑰𝑰[𝑿] + 𝒃[𝑿,𝑾] ⊗ 𝑰𝑰[𝑿]𝒒 [𝑿] .
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Compatibility of the material deformation derivative ðS𝑾 w. r. t. the inner product and density
representation (53) of the energy 𝔘∇ yields〈

𝛿𝔘∇
𝛿𝑿

���
ð♯𝒒=0

,𝑾

〉
L2 (TR3 |S )

= 𝐾

( 〈
ðS𝑾∇𝒒 [𝑿]

��
ð♯𝒒=0,∇𝒒 [𝑿]

〉
L2 (T2S)

+ 1
2

〈
∥∇𝒒 [𝑿] ∥2

T2S IdTS ,𝑮 [𝑿,𝑾]
〉

L2 (T2S)

)
= 𝐾

( 〈
𝒒 [𝑿] ⊗ ∇𝒒 [𝑿],∇𝑮𝑇 [𝑿,𝑾]

〉
L2 (T3S)

+
〈
(∇𝒒 [𝑿]) (∇𝒒 [𝑿])𝑇 −𝝈𝐸,𝐼 ,𝑮 [𝑿,𝑾]

〉
L2 (T2S)

+
〈
∇(𝑰𝑰 [𝑿 ]𝒒 [𝑿 ] )𝒒 [𝑿] − (∇𝑰𝑰 [𝑿 ]𝒒 [𝑿])𝒒 [𝑿], 𝒃[𝑿,𝑾]

〉
L2 (TS)

)
with 𝝈𝐸,𝐼

𝐾
=ΠQ2S ((∇𝒒 [𝑿])𝑇∇𝒒 [𝑿]) = (∇𝒒 [𝑿])𝑇∇𝒒 [𝑿] −

∥∇𝒒 [𝑿 ] ∥2
T2S

2 IdTS . Eventually, integration by
parts and the identity

(div(𝒒 [𝑿] ⊗ ∇𝒒 [𝑿]))𝑇 = (∇𝒒 [𝑿]) (∇𝒒 [𝑿])𝑇 + (Δ𝒒 [𝑿]) ⊗ 𝒒 [𝑿]

result in (55).
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FIG. 4. Solutions for the L2-gradient flows (61) with 𝐾 = 0.1 and 𝜔 = 0.5: The initial solution (top left) is periodic on the
boundaries and constant horizontally. Vertically, it is twisted counterclockwise and compressed towards the center. For a better
readability, vector field solutions are only plotted on a diagonal without loss of information. The solutions are approximated for
four different models, where we assume the gauge of surface independence and time derivative consistently, namely the material,
upper-convected, lower-convected and Jaumann gauge/derivative (from left to right). All energy paths (top right) are decreasing as
expected by energy rate (40) with 𝚽 =𝚿. The energy plot has a log-scale on its time axis. Vector field solutions tend to be parallel
aligned with a constant length towards the time process. We show the solutions at time 𝑡 = 0.016 (middle row) and 𝑡 = 10 (bottom
row), where they almost reached their minimal state. The time-step size 𝜏 of the time discretization increases from 𝜏 = 10−4 at the
beginning until 𝜏 = 0.45 at the end, see the semitransparent gray dots at the energy paths. The grid size ℎ = 10−2 is constant along
the vertical local Lagrange coordinate 𝑦2 for all times. The horizontal gray gridlines only represent every fourth available spatial
line, i. e., the distance between two gridlines is 0.04 constantly on local Lagrange coordinates. Solutions are plotted w. r. t. Euler
coordinates, i. e., w. r. t. the embedding space, to show the local deformations of the underlying domain towards the minimum
state. Any impressions that the surface gets bent in normal direction is just an optical illusion. In absence of normal forces the
surface stays flat all times. (Video online: [22])
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