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Abstract

Eigenstrains are created as a result of anelastic effects such as defects, temperature changes, bulk growth,
etc., and strongly affect the overall response of solids. In this paper, we study the residual stress and defor-
mation fields of an incompressible, isotropic, infinite wedge due to a circumferentially-symmetric distribution
of finite eigenstrains. In particular, we establish explicit exact solutions for the residual stresses and defor-
mation of a neo-Hookean wedge containing a symmetric inclusion with finite eigenstrains. In addition, we
numerically solve for the residual stress field of a neo-Hookean wedge induced by a symmetric Mooney-Rivlin
inhomogeneity with finite eigenstrains.
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1 Introduction

The governing equations of nonlinear elasticity are formidably complicated and are amenable to analytic so-
lutions only for very few problems. Semi-inverse methods have been particularly useful for obtaining exact
solutions for nonlinear elasticity problems. One problem that has attracted several researchers in the last few
decades is that of an infinite wedge made of a nonlinear elastic solid (either compressible or incompressible)
under various boundary conditions and in the absence of body forces.

Tao and Rajagopal [1990] studied the inhomogeneous deformation of a wedge made of a Blatz-Ko material.
They assumed a specific form of deformations in which radial planes in the reference configuration remain
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radial planes after deformation. They found the only possible inhomogeneous solution, which turned out to
be asymmetric with respect to the bisecting plane of the wedge. Such a specific class of deformations was
further studied in the literature to find the inhomogeneous deformations in wedges and cones. Fu et al. [1990]
explored circumferentially-symmetric finite deformations of a wedge made of an incompressible Mooney-Rivlin
material. To solve the problem, they specified the translation and rotation of the lateral faces of the wedge.
They proved that the deformation is homogeneous when the pressure field associated with the incompressibility
condition is uniform. They also found possible inhomogeneous solutions when the pressure field is not uniform.
For the inhomogeneous solutions, they were able to reduce the governing equations to a convenient form that
allowed for a plane-phase analysis. They observed that for certain wedge angles, the deformation of the wedge
is not radially-unidirectional, i.e., some parts of the wedge radially stretch, while others contract. Rajagopal
and Carroll [1992] assumed inhomogeneous circumferentially-symmetric finite deformations of a wedge made
of an isotropic material. Using the displacement lateral boundary conditions and by applying the required
tractions on the circular boundary, they found, when the material is compressible, a necessary condition that the
energy function needs to satisfy for the assumed inhomogeneous deformation to be possible. For incompressible
materials, they found that such an inhomogeneous deformation is possible if the pressure field has a specific
form. Rajagopal and Tao [1992] explored inhomogeneous circumferentially-symmetric finite deformations of a
wedge made of an incompressible power law generalized neo-Hookean material. They showed that a “boundary
layer solution”, i.e., one that is homogeneous in the interior of the wedge but is inhomogeneous close to the
boundary, is possible with a bounded pressure field. However, they showed that inhomogeneous solutions are
possible only if the pressure field develops a logarithmic singularity at the apex of the wedge. Walton and
Wilber [2004] investigated the deformations of a neo-Hookean elastic wedge considering the aforementioned
class of deformations. They observed that homogeneous non-unidirectional deformations are possible in every
incompressible, isotropic, hyperelastic material. Assuming a more general class of deformations, where some
restrictions on the form of the deformation were relaxed, they showed that there exist no additional solutions.
Walton [2003] studied the stability of this class of deformations under small amplitude vibrational perturbations
of the lateral faces of a wedge. He found that even to the first order in an asymptotic expansion of the amplitude
of the lateral sides of the wedge, the vibrations cannot remain planar; rather out-of-plane vibrational modes
must be excited in the interior of the wedge.

In continuum mechanics a strain is some measure of deformation that gives the length of an infinitesimal line
element assuming that the length of this line element is known in some other (reference) configuration. A stress
is usually defined to be an areal density of force. Given a pair of thermodynamically-conjugate stress and strain,
e.g. the first Piola-Kirchhoff stress and the deformation gradient (P,F) or the second Piola-Kirchhoff stress
and the right Cauchy-Green strain (S,C), locally a non-zero strain does not imply a non-zero stress. That part
of strain that locally is related to the corresponding stress is called elastic strain. The remaining part is usually
referred to as eigenstrain or pre-strain. The term eigenstrain was first used by Mura [1982]. Other terms have
been used in the literature for the same concept, e.g. initial strain [Kondo, 1949], inherent strain [Ueda et al.,
1975], and transformation strain [Eshelby, 1957] (see [Jun and Korsunsky, 2010] for a more detailed discussion).
In a homogeneous body by an inclusion we mean a region with a distribution of eigenstrains. When the region
with eignstrains and the matrix are made of different materials instead of inclusion we use inhomogeneity with
eigenstrain.

In the setting of linear elasticity Eshelby [1957] computed the stress field of an ellipsoidal inclusion with
uniform (infinitesimal) eigenstrains in an infinite solid. There have been a few 2D extensions of Eshleby’s problem
to finite elasticity for harmonic materials [Kim and Schiavone, 2007; Kim et al., 2008; Kim and Schiavone, 2008;
Ru and Schiavone, 1996; Ru et al., 2005]. The classical shrink-fit problem of nonlinear elasticity [Antman and
Shvartsman, 1994] is the nonlinear analogue of an inclusion with pure dilatational eigenstrains. The problem
of finite eigenstrains in 3D nonlinear elasticity was studied by Yavari and Goriely [2013]. They calculated the
residual stress fields induced by finite radial and circumferential eigenstrains for the case of spherical balls and
(finite and infinite) circular cylindrical bars made of arbitrary incompressible and isotropic solids. The problem
of finite shear eigenstrains and the twist-fit problem were investigated recently by Yavari and Goriely [2015a].

To our best knowledge, finite eigenstrains in the framework of nonlinear elasticity have not been studied
in any geometry other than spherical and cylindrical. In this paper, we consider an infinite wedge made of an
incompressible and isotropic solid and assume that it has a circumferentially-symmetric distribution of finite
radial and circumferential eigenstrains. We derive the governing equations of the wedge using a semi-inverse
method and assuming a specific class of deformations. In particular, we solve for the stress field of both
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neo-Hookean and Mooney-Rivlin wedges with a symmetric inclusion or inhomogeneity with eigenstrains.
This paper is organized as follows. In section 2, we tersely review some basic concepts of geometric anelas-

ticity. In section 3, we discuss the material manifold of a wedge with a circumferentially-symmetric distribution
of finite eigenstrains and find the governing equations for an incompressible, isotropic wedge. In sections 3.1
and 3.2, we solve the problems of an inclusion and a Mooney-Rivlin inhomogeneity with uniform eigenstrains
in a neo-Hookean wedge. In section 3.3, we find the impotent (stress-free) circumferentially-symmetric finite
eigenstrain distributions. In section 4, we conclude the paper with some remarks.

2 Elements of Geometric Anelasticity

In this section, we briefly review some fundamental elements of the geometric theory of nonlinear elasticity. For
more detailed discussions, see [Marsden and Hughes, 1983].

Kinematics. A body B is assumed to be identified with a Riemannian manifold (B,G) . A configuration of
B is a smooth embedding ϕ : B → S, where (S, g) is the Euclidean ambient space. We denote by ∇G and ∇g

the Levi-Civita connections associated with the Riemannian manifolds (B,G) and (S, g), respectively. The set
of all configurations of B is denoted by C. A motion of B is a curve R+ → ϕt ∈ C such that ϕt assigns a spatial
point x = ϕt(X) = ϕ (X, t) ∈ S to every material point X ∈ B at a time t. The deformation gradient F is the
differential map of ϕt defined as

F (X, t) = dϕt(X) : TXB → Tϕt(X)S . (2.1)

The adjoint of F is defined by

F T (X, t) : Tϕt(X)S → TXB , g (FV ,v) = G
(
V ,F Tv

)
, ∀V ∈ TXB, v ∈ Tϕt(X)S . (2.2)

The right Cauchy-Green deformation tensor is defined as

C(X, t) = F T (X, t)F (X, t) : TXB → TXB . (2.3)

In the coordinate charts {XA} and {xa} for B and S, respectively, in components, CAB = GALF aLF
b
Bgab. The

Jacobian of the motion J relates the material and spatial Riemannian volume elements dV (X,G) and dv(x, g)
by dv = JdV and is given by

J =

√
det g

detG
detF . (2.4)

Constitutive equations. In this paper we restrict our calculations to incompressible isotropic hyperelastic
solids. That is, there exists an energy function W that depends only on the first two principal invariants of C :
I1 = trC and I2 = 1

2 (tr(C)2 − tr(C2)) , i.e., W = W (X, I1, I2) , such that the Cauchy stress tensor is given in
components by [Doyle and Ericksen, 1956]

σab = 2F aAF
b
B

[
(WI1 + I1WI2)GAB −WI2C

AB
]
− pgab , (2.5)

where WI1 := ∂W
∂I1

, WI2 := ∂W
∂I2

, and p is the Lagrange multiplier associated with the internal incompressibility
constraint J = 1.

Equilibrium equations. In terms of the Cauchy stress tensor, the localized balance of linear momentum of
a body in static equilibrium in the absence of body forces reads

divσ = 0 , (2.6)

where div denotes the spatial divergence operator, which in components reads

(divσ)
a

= σab|b =
∂σab

∂xb
+ σacγbcb + σcbγacb , (2.7)

where γabc is the Christoffel symbol of the Levi-Civita connection ∇g in the local chart {xa} , defined as
∇g

∂b∂c = γabc∂a, (similarly, for the material manifold ∇G
∂B∂C = ΓABC∂A). Moreover, the Christoffel symbols
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Figure 1: A wedge with a finite circumferentially-symmetric eigenstrain distribution.

of a Riemannian connection can be directly expressed in terms of the components of the Riemannian metric,
with which it is compatible, for instance, the Christoffel symbols of ∇g and ∇G are written as

γabc =
1

2
gak

(
∂gkb
∂xc

+
∂gkc
∂xb

− ∂gbc
∂xk

)
, ΓABC =

1

2
GAK

(
∂GKB
∂XC

+
∂GKC
∂XB

− ∂GBC
∂XK

)
. (2.8)

3 An infinite incompressible isotropic wedge with finite circumferentially-
symmetric eigenstrains

In this section we consider an infinitely long wedge of radius Ro and angle 2Θo . Let (R,Θ, Z) be the cylindrical
coordinates for which R ≥ 0 , −Θo ≤ Θ ≤ Θo , and Z ∈ R such that the axis of the wedge corresponds to
R = 0. In the cylindrical coordinates (R,Θ, Z), the material metric for the eigenstrain-free configuration reads

G0 =

 1 0 0
0 R2 0
0 0 1

 . (3.1)

We assume a circumferentially-symmetric eigenstrain (pre-strain) distribution in the wedge (see Figure 1). Fol-
lowing the construction introduced by Yavari and Goriely [2013], of a stress-free Riemannian material manifold
to model eigenstrains,1 we consider the following material metric

G =

 e2ωR(Θ) 0 0
0 R2e2ωΘ(Θ) 0
0 0 1

 , (3.2)

where ωR(Θ) and ωΘ(Θ) are arbitrary functions respectively describing the radial and circumferential eigenstrain
distributions in the wedge. We endow the ambient space with the flat Euclidean metric, which in cylindrical
coordinates (r, θ, z) reads

g =

 1 0 0
0 r2 0
0 0 1

 . (3.3)

Let us consider the class of deformations for which radial surfaces (planar surfaces for which Θ = constant) in
the reference configuration remain planar and are mapped to radial surfaces in the current configuration. That
is, we assume an embedding of the material manifold into the ambient space with the following form

r = k(R,Θ) , θ = h(Θ) , z = Z . (3.4)

1Similar constructions using non-trivial material geometries have been introduced in thermoelasticity, growth mechanics, and
the mechanics of distributed defects [Ozakin and Yavari, 2010; Yavari, 2010; Yavari and Goriely, 2012a,b, 2014, 2015b; Sadik and
Yavari, 2015; Sadik et al., 2015].
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Therefore, the deformation gradient reads

F =


∂k
∂R

∂k
∂Θ 0

0 dh
dΘ 0

0 0 1

 . (3.5)

Assuming incompressibility J =
√

detg
detGdetF = 1, we find

h′(Θ)
[
k2(R,Θ)− k2(0,Θ)

]
= R2eωR(Θ)+ωΘ(Θ). (3.6)

Eliminating the rigid body translation by setting r(0,Θ) = 0 , we find that

r = k(R,Θ) = Rζ(Θ), (3.7)

where

ζ2(Θ) =
eωR(Θ)+ωΘ(Θ)

h′(Θ)
. (3.8)

This means that for an incompressible wedge within the class of deformations (3.4), and given the radial
and circumferential eigenstrain distributions, the kinematics is fully determined after solving for the unknown
function ζ = ζ(Θ). The right Cauchy-Green deformation tensor is written as

C =


e−2ωR(Θ)ζ2(Θ) Re−2ωR(Θ)ζ(Θ)ζ ′(Θ) 0

e−2ωΘ(Θ)

R ζ(Θ)ζ ′(Θ) e2ωR(Θ)

ζ2(Θ) + ζ ′(Θ)2e−2ωΘ(Θ) 0

0 0 1

 . (3.9)

The invariants of C are

I1 =tr(C) = 1 + ζ(Θ)2e−2ωR(Θ) + ζ ′(Θ)2e−2ωΘ(Θ) +
e2ωR(Θ)

ζ(Θ)2
, (3.10)

I2 = =
1

2
(tr(C2)− tr(C)2) = 1 + ζ(Θ)2e−2ωR(Θ) + ζ ′(Θ)2e−2ωΘ(Θ) +

e2ωR(Θ)

ζ(Θ)2
, (3.11)

I3 =det(C) = 1 . (3.12)

Note that I1 = I2 depends only on Θ.
We assume that the wedge is made of an incompressible isotropic circumferentially-inhomogeneous material,

i.e., the strain energy function has the form W = W (Θ, I1, I2). Following (2.5), for the class of deformations
(3.4), the non-zero components of the Cauchy stress tensor read

σrr = −p+ 2 (WI1 +WI2)
(
e−2ωΘ(Θ)ζ ′(Θ)2 + ζ(Θ)2e−2ωR(Θ)

)
+ 2WI2 , (3.13)

σrθ =
2ζ ′(Θ)

Rζ(Θ)2
(WI1 +WI2) eωR(Θ)−ωΘ(Θ) , (3.14)

σθθ =
1

R2ζ(Θ)4

(
2e2ωR(Θ) (WI1 +WI2)− ζ(Θ)2 (p− 2WI2)

)
, (3.15)

σzz = −p+ 2WI2

(
e−2ωΘ(Θ)ζ ′(Θ)2 + ζ(Θ)2e−2ωR(Θ) +

e2ωR(Θ)

ζ(Θ)2

)
+ 2WI1 . (3.16)

The physical components of the Cauchy stress [Truesdell, 1953], i.e., σ̂ab = σab
√
gaagbb (no summation) read

σ̂rr = σrr , σ̂rθ = Rζ(Θ)σrθ , σ̂θθ = R2ζ2(Θ)σθθ , σ̂zz = σzz . (3.17)
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The first Piola-Kirchhoff stress tensor P aA = J(F−1)Abσ
ab has the following non-zero components

P rR =
e−2ωR(Θ)

ζ(Θ)

(
2ζ(Θ)2 (WI1 +WI2)− e2ωR(Θ) (p− 2WI2)

)
, (3.18)

P rΘ =
2e−2ωΘ(Θ)

R
ζ ′(Θ) (WI1 +WI2) , (3.19)

P θR =
e−ωΘ(Θ)−ωR(Θ)ζ ′(Θ)

Rζ(Θ)
(p− 2WI2) , (3.20)

P θΘ =
e−ωΘ(Θ)−ωR(Θ)

R2 ζ(Θ)2

(
2e2ωR(Θ) (WI1 +WI2)− ζ(Θ)2 (p− 2WI2)

)
, (3.21)

P zZ =− p+ 2WI2

(
e−2ωΘ(Θ)ζ ′(Θ)2 + ζ(Θ)2e−2ωR(Θ) +

e2ωR(Θ)

ζ(Θ)2

)
+ 2WI1 . (3.22)

In the absence of body forces, the non-trivial equilibrium equations are σrb|b = 0 and σθb|b = 0 (the axial
equilibrium equation gives us p = p(R,Θ)). Note that, following (3.4), (3.7), and (3.8), we have

∂

∂r
=

1

ζ(Θ)

∂

∂R
, (3.23)

∂

∂θ
=

ζ2(Θ)

eωR(Θ)+ωΘ(Θ)

(
∂

∂Θ
− Rζ ′(Θ)

ζ(Θ)

∂

∂R

)
. (3.24)

Therefore, the non-trivial equilibrium equations read

2ζe−2ωΘ

[
ζ ′′ (WI1 +WI2) + ζ ′ (WI1 +WI2) (ω′R − ω′Θ) + ζ ′

(
W ′I1 +W ′I2

) ]
+2 (WI1 +WI2)

[
ζ2e−2ωR − e2ωR

ζ2

]
−R ∂p

∂R
= 0 ,

(3.25a)

Rζζ ′
∂p

∂R
− ζ2 ∂p

∂Θ
+ 2e2ωR

(
W ′I1 +W ′I2

)
+ 4e2ωRω′R (WI1 +WI2) + 2ζ2W ′I2 = 0 , (3.25b)

where by using the chain rule, one can write

W ′I1(Θ) =
∂WI1

∂I1

∂I1
∂Θ

+
∂WI1

∂I2

∂I2
∂Θ

+
∂WI1

∂Θ
,

W ′I2(Θ) =
∂WI2

∂I1

∂I1
∂Θ

+
∂WI2

∂I2

∂I2
∂Θ

+
∂WI2

∂Θ
.

(3.26)

It follows from (3.25a) that
p(R,Θ) = f(Θ) lnR+ Φ(Θ) , (3.27)

where

f(Θ) = 2ζe−2ωΘ

[
ζ ′′ (WI1 +WI2) + ζ ′ (WI1 +WI2) (ω′R − ω′Θ)

+ ζ ′
(
W ′I1 +W ′I2

) ]
+ 2 (WI1 +WI2)

[
ζ2e−2ωR − e2ωR

ζ2

]
, (3.28)

and Φ(Θ) is an arbitrary function of Θ to be determined. Substituting the pressure field into (3.25b) yields

ζζ ′f − ζ2Φ′ + 2e2ωR
(
W ′I1 +W ′I2

)
+ 4e2ωRω′R (WI1 +WI2) + 2ζ2W ′I2 − ζ

2f ′ lnR = 0 . (3.29)

Note that (3.29) must hold for any R and ζ(Θ) 6= 0 . Therefore, f is constant, i.e., f(Θ) = fo and hence

p(R,Θ) = fo lnR+ Φ(Θ), (3.30)

Therefore, the equilibrium equation (3.29) is reduced to the following ODE

ζζ ′fo − ζ2Φ′ + 4e2ωRω′R (WI1 +WI2) + 2e2ωRW ′I1 + 2
[
e2ωR + ζ2

]
W ′I2 = 0 . (3.31)
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Figure 2: A wedge with uniform eigenstrains in the shaded region.

One then obtains Φ′ as

Φ′(Θ) = fo
ζ ′

ζ
+

2e2ωR

ζ2

(
W ′I1 +W ′I2

)
+

4e2ωRω′R
ζ2

(WI1 +WI2) + 2W ′I2 . (3.32)

Equation (3.28) gives us the following nonlinear second-order ODE for ζ(Θ)

2ζe−2ωΘ

[
ζ ′′ (WI1 +WI2) + ζ ′ (WI1 +WI2) (ω′R − ω′Θ)

+ ζ ′
(
W ′I1 +W ′I2

) ]
+ 2 (WI1 +WI2)

[
ζ2e−2ωR − e2ωR

ζ2

]
= fo . (3.33)

In the next section, we will solve for the residual stress field of a neo-Hookean wedge with a symmetric inclusion
with uniform eigenstrains.

3.1 An inclusion with uniform eigenstrains in a neo-Hookean wedge with traction-
free lateral boundaries

Let us consider the following distribution of eigenstrains in the wedge (see Figure 2)

ωR(Θ) =

{
ω1 , |Θ| ≤ αo
0 , |Θ| > αo

, ωΘ(Θ) =

{
ω2 , |Θ| ≤ αo
0 , |Θ| > αo

, (3.34)

where ω1 and ω2 are constants. Let us assume that the wedge is made of an incompressible homogeneous
neo-Hookean solid, i.e., W = W (I1) = µ

2 (I1 − 3) . Thus, WI1 = µ
2 , WI2 = 0 . Simplifying (3.33), we find the

following non-linear second-order ODEs inside and outside the inclusion

ζζ ′′e−2ω2 + ζ2e−2ω1 − e2ω1

ζ2
=
fo
µ
, |Θ| ≤ αo ,

ζζ ′′ + ζ2 − 1

ζ2
=
fo
µ
, |Θ| > αo .

(3.35)

Note that in the absence of eigenstrains (ω1 = ω2 = 0), the above equations reduce to the equation for the
deformation of a wedge derived by Fu et al. [1990]; Rajagopal and Tao [1992]; Rajagopal and Carroll [1992].
We integrate (3.32) for the assumed eigenstrain distribution and find that the pressure field has the following
distribution

p(R,Θ) = fo lnR+ Φ(Θ) =

{
fo ln(Rζ(Θ)) + pi , |Θ| ≤ αo ,
fo ln(Rζ(Θ)) + po , |Θ| > αo ,

(3.36)
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where pi and po are constants of integration. We integrate (3.35) once and obtain

ζ ′(Θ)2 =

{
ci1 + 2foe

2ω2

µ ln ζ − ζ2e2(ω2−ω1) − e2(ω1+ω2)

ζ2 , |Θ| ≤ αo ,
co1 + 2fo

µ ln ζ − ζ2 − 1
ζ2 , |Θ| > αo ,

(3.37)

where ci1 and co1
are constants of integration. In order to solve (3.37) for ζ , we next examine the boundary

and continuity conditions.

Boundary conditions. The traction vector is defined as

t = 〈σ,n〉g . (3.38)

In components, ta(x,n) = σacgbcn
b. From (3.38), the continuity of the traction vector on the boundary of the

inclusion (or inhomogeneity) implies that both σrθ and σθθ must be continuous at Θ=±αo. Thus, after some
simplifications, (3.14) and (3.15) give us

eω1−ω2ζ ′(Θ)|Θ=α−o
= ζ ′(Θ)|Θ=α+

o
, (3.39)

and
µ
(
e2ω1 − 1

)
= (pi − po) ζ(±αo)2. (3.40)

Remark 3.1. From (3.40), it is clear that when the eigenstrain distribution is purely circumferential, i.e.,
ω1 = 0 , we find that pi = po = c . Hence, the pressure field is continuous at the inclusion boundary and reads
p(R,Θ) = fo ln (Rζ(Θ)) + c .

Remark 3.2. Note that although the Cauchy traction vector t (x,n) = 〈σ,n〉g is continuous at the inclusion
boundary, the first Piola-Kirchhoff traction vector to (X,N) = 〈P ,N〉G is not. This is due to the fact that to
is defined with respect to the undeformed surface element dA in the reference configuration. Since the material
metric is discontinuous at the inclusion boundary, dA is discontinuous as well. However, to (X,N) dA =
t (x,n) da is continuous. Hence the first Piola-Kirchhoff traction vector must be discontinuous at the inclusion
boundary to account for the discontinuity of dA and make to (X,N) dA continuous. On the other hand, t is
continuous because it is defined per unit of deformed area in the current configuration da , which is continuous
at the inclusion boundary.

The continuity of the displacement field implies that ζ(Θ) and h(Θ) are continuous at Θ = ±αo . For
boundary conditions, we can either prescribe the tractions or the resultant forces acting on the boundary of the
wedge. Alternatively, we may specify the boundary displacement and then find the required surface traction.
We assume the special case of symmetric boundary conditions with respect to the bisecting plane of the wedge,
and then find the boundary tractions required to maintain such a deformation. Note, however, that Tao and
Rajagopal [1990] showed that for Blatz-Ko (compressible) materials, only asymmetric inhomogeneous solutions
are admitted by the equilibrium equations.

Let us assume that the lateral boundaries are traction-free, i.e.

P rΘ = P θΘ = 0 , 0 ≤ R ≤ Ro,Θ = ±Θo . (3.41)

Imposing (3.41), we find that p(R,Θ) must be bounded (fo=0) and

ζ ′(±Θo) = 0 , po =
µ

ζ(Θo)2
. (3.42)

Furthermore, (3.36) implies that the pressure is equal to pi inside the inclusion and is equal to po outside the
inclusion. Note that due to the symmetry of the problem, ζ(Θ) and h(Θ) must be even and odd, respectively.
Thus, since (3.35) implies that ζ(Θ) must be at least C2 inside the inclusion, we have ζ ′(0) = 0 . Thus, we can
solve the problem by imposing the above boundary conditions, which in turn will specify the required traction
distribution on the circular boundary of the wedge. Then, we find the resultant force acting on the circular
boundary of the wedge, which is equal to the force that needs be applied at the apex of the wedge to maintain
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the equilibrium. The radial material traction per unit undeformed area acting on the circular boundary is
calculated using the relation, tao = P aANBGBA. Thus2

tθo = P̂ θR , tro = P̂ rR, R = Ro , −Θo < Θ < Θo . (3.43)

Therefore, the radial force per unit undeformed area reads3

Fr =

∫
trodAG , (3.44)

where dAG is the Riemannian area element, calculated as dAG = Roe
ωΘ(Θ)dΘ ∧ dZ.4 Hence, for the infinite

cylinder (in the Z-direction), the radial force per unit length of the cylinder in the Z-direction reads

Fr =

∫ Θo

−Θo

(
Roe

ωΘ(Θ)eωR(Θ)P rR|(Ro,Θ)

)
dΘ , (3.46)

which is simplified to read

Fr = 2µRo

[
eω2−ω1

∫ αo

0

(
ζ(Θ)− pie

2ω1

µζ(Θ)

)
dΘ +

∫ Θo

αo

(
ζ(Θ)− po

µζ(Θ)

)
dΘ

]
. (3.47)

Remark 3.3. It is worth mentioning that only if ζ(Θ)=constant we can enforce pointwise zero traction boundary
condition on the whole boundary of the wedge for any values of ω1. From (3.35), the continuity of ζ(Θ) implies
that Θo=αo and ζ = eω1 , which in turn gives us h(Θ) = eω2−ω1Θ. In this case, all the stress components vanish
point-wise.

Solving (3.37), one obtains ζ(Θ) in the upper half region of the wedge as5

ζ(Θ) =



e
1
2 (ω1−ω2)

[(√(
1
2ci1e

ω1−ω2
)2 − e2(ω1+ω2)

)
cos (2eω2−ω1Θ + ci2)

+ 1
2ci1e

ω1−ω2

] 1
2

, 0 ≤ Θ ≤ αo,

[
1
2co1 +

(√
1
4c

2
o1
− 1
)

cos (2Θ + co2)
] 1

2

, αo ≤ Θ ≤ Θo,

(3.48)

where ci2 and co2
are constants.

Equation (3.42), i.e., ζ ′(Θo) = 0, and ζ ′(0) = 0 give us co2
= k1π − 2Θo and ci2 = k2π, respectively, where

2Note that the physical components of the first Piola-Kirchhoff stress tensor are defined as P̂aA = PaA
√
GAAgaa (no summa-

tion).
3Note that the resultant force acting in θ-direction on the circular boundary is trivially zero as ζ′(Θ) is an odd function. In

addition, tz = 0 as P zR = 0 .
4Note that the volume form of a Riemannian manifold is defined as

Ω =
√

det(gij)dx
1 ∧ dx2 ∧ ... ∧ dxn. (3.45)

5Here, it suffices to specify ζ(Θ) and h(Θ) only in the upper half region of the wedge as these functions are even and odd,
respectively.
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k1, k2 ∈ Z. Upon using the continuity of ζ(Θ) at Θ = αo as well as (3.39), we find ci1 and co1
. They read

ci1 = 2e2ω2

[
1 +

(
e4ω1 − 1

)2 {−e4ω1
(
e4ω1 + 1

)
cot (2 (αo −Θo)) sin

(
4eω2−ω1αo

)
+ e4ω1 csc2 (2 (αo −Θo)) sin2

(
2eω2−ω1αo

) ( (
e4ω1 + 1

)
cos2 (2 (αo −Θo)) + e4ω1 − 1

)
±
√

2
[
−e8ω1 csc4 (2 (αo −Θo)) sin2

(
2
(
1− eω2−ω1

)
αo − 2Θo

){ (
1− e4ω1

)
cos (4 (αo −Θo))

+ e4ω1 cos
(
4
(
1− eω2−ω1

)
αo − 4Θo

)
+
(
e4ω1 − 1

) (
e4ω1 cos

(
4eω2−ω1αo

)
+ 1
)
− e8ω1

}] 1
2

−e8ω1 sin2
(
2eω2−ω1αo

)
+ e4ω1

(
cos2

(
2eω2−ω1αo

)
+ 1
)}−1

] 1
2

, (3.49)

co1
= 2

[
1 +

(
e2ω1 sin (2eω2−ω1αo)

sin (2 (Θo − αo))

)2(( ci1
2e2ω2

)2

− 1

)] 1
2

. (3.50)

Using (3.7), one finds

h(Θ) =



tan−1

[
e−(ω1+ω2)

(
−
√(

1
2ci1e

ω1−ω2
)2 − e2(ω1+ω2)

+ 1
2ci1e

ω1−ω2

)
tan

(
eω2−ω1Θ + 1

2ci2
)]

+ ci3 , 0 ≤ Θ ≤ αo,

tan−1
[(

1
2co1 −

√
1
4c

2
o1
− 1
)

tan(Θ + 1
2co2)

]
+ co3 , αo ≤ Θ ≤ Θo,

(3.51)

where ci3 and co3
are constants of integration. Imposing the condition h(0) = 0, implies that ci3 = −k2

π
2 −k3π,

where k3 ∈ Z. Using the continuity of h(Θ) at Θ = αo, we have

co3
= tan−1

e−(ω1+ω2)

−
√(

1

2
ci1e

ω1−ω2

)2

− e2(ω1+ω2) +
1

2
ci1e

ω1−ω2

 tan

(
eω2−ω1αo +

k2π

2

)
− tan−1

[(
1

2
co1
−
√

1

4
c2o1
− 1

)
tan(αo −Θo +

k1π

2
)

]
− k2

π

2
− k3π. (3.52)

Remark 3.4. From (3.49) and (3.50), it can be seen that ω1 = 0 implies that ci1 = 2e2ω2 and co1
= 2. In

this case, the radius of the wedge will not change, and the inclusion will deform independently of the matrix in
the circumferential direction, such that h(Θ) = eω2Θ in the inclusion, and h(Θ) = (eω2 − 1)αo + Θ outside the
inclusion. Furthermore, all components of the stress tensor are zero point-wise.

Using (3.17), (3.36), (3.40), and (3.42), we find the physical components of the Cauchy stress, along with
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the pressure field as follows

σ̂rr =

{
−pi + µ

(
e−2ω2ζ ′(Θ)2 + e−2ω1ζ(Θ)2

)
, |Θ| ≤ αo ,

−po + µ
(
ζ ′(Θ)2 + ζ(Θ)2

)
, |Θ| > αo ,

(3.53)

σ̂rθ =

{
µζ′(Θ)
ζ(Θ) e

ω1−ω2 , |Θ| ≤ αo ,
µζ′(Θ)
ζ(Θ) , |Θ| > αo ,

(3.54)

σ̂θθ =

{
1

ζ(Θ)2

(
µe2ω1 − piζ(Θ)2

)
, |Θ| ≤ αo ,

1
ζ(Θ)2

(
µ− poζ(Θ)2

)
, |Θ| > αo ,

(3.55)

σ̂zz =

{
−pi + µ , |Θ| ≤ αo ,
−po + µ , |Θ| > αo ,

(3.56)

where

p(Θ) =

pi = µ
ζ(Θo)2 +

µ(e2ω1−1)
ζ(αo)2 , |Θ| ≤ αo ,

po = µ
ζ(Θo)2 , |Θ| > αo .

(3.57)

Remark 3.5. Note that the physical components of the Cauchy stress are independent of the radial coordinate
R. Therefore, the stress components at the apex of the wedge do not have a unique value.

Numerical results. We now consider some specific examples and find the deformed shape of the wedge
and the residual stress field. A comparison of the deformations and the behavior of the stress components for
different values of eigenstrains ω1 and ω2, and various wedge geometries are presented in Figures 3 to 7. A wedge
having an inclusion with positive pure dilatational eigenstrains is depicted in Figure 3. As expected both the
inclusion and the matrix regions are pushed outward in the radial direction, with the matrix filaments stretched
more than those of the inclusion. Although the circumferential eigenstrain is positive in this case, the total
wedge angle is decreased compared to the wedge initial angle. This also holds for any positive values of pure
dilatational eigenstrains. Moreover, σ̂rr is negative in the inclusion and positive in the matrix, and undergoes
a jump at the inclusion-matrix interface, which is also the case as illustrated in other figures. For an inclusion
with negative purely dilatational eigenstrains, all the radial lines of the wedge displace inward, with the matrix
region being shortened more than the inclusion (Figure 4). Undeformed and deformed configurations of a wedge
with positive radial and negative circumferential eigenstrains is shown in Figure 5. Note that σ̂θθ is positive
throughout the wedge, and σ̂rr is negative and positive in the inclusion and the matrix, respectively. A wedge
containing an inclusion with a negative radial and positive circumferential eigenstrains is shown in Figure 6.
Notice that unlike other cases, for which the deformation was purely inward or purely outward, in this example,
the deformation is no longer unidirectional. Rather, the central region of the inclusion moves outward, while
the region close to the inclusion-matrix interface moves inward. Moreover, this trend continues even for the
large negative values of the radial eigenstrain. Although the circumferential eigenstrain is positive, the inclusion
shrinks in the circumferential direction, while the matrix expands in this direction such that the total angle of
the wedge is larger than its initial value. Figure 7 shows an inclusion with a purely radial eigenstrain. Note that
although the eigenstrian is purely radial, the wedge is deformed considerably in the circumferential direction,
with the inclusion expanding and the matrix shrinking in this direction such that the total angle is less than
the initial angle of the wedge.

3.2 A Mooney-Rivlin inhomogeneity with uniform eigenstrains in a neo-Hookean
wedge with clamped lateral boundaries

In this example, we consider an inhomogeneity made of a Mooney-Rivlin material in a neo-Hookean wedge with
fixed (clamped) lateral boundaries such that they cannot move in the radial or circumferential directions. The
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Figure 3: Left: The initial and deformed configurations of a wedge with the initial half-angle Θo = π
4

having an inclusion with

αo = π
8

and the pure dilatational eigenstrain distribution ω1 = ω2 = 1
2

. Right: Variation of the physical components of the Cauchy
stress tensor versus Θ.

energy function has the following Θ-dependence in the wedge

W (I1, I2,Θ) =

{
µ1

2 (I1 − 3) + µ2

2 (I2 − 3) , |Θ| ≤ αo
µo

2 (I1 − 3) , |Θ| > αo
. (3.58)

Moreover, we consider the eigenstrain distribution in the wedge, given by (3.34). Looking at (3.32) and (3.33)
one observes that equations (3.36) and (3.37) of Section 3.1 hold for this example as well if µ in (3.37) is replaced
by µ1 + µ2 and µo in the inhomogeneity and the matrix, respectively. Therefore

p(R,Θ) =

{
fo ln(Rζ(Θ)) + pi , |Θ| ≤ αo ,
fo ln(Rζ(Θ)) + po , |Θ| > αo ,

(3.59)

ζ ′(Θ)2 =

{
ci1 + 2foe

2ω2

µ1+µ2
ln ζ(Θ)− ζ2(Θ)e2(ω2−ω1) − e2(ω1+ω2)

ζ2(Θ) , |Θ| ≤ αo ,
co1

+ 2fo
µo

ln ζ(Θ)− ζ2(Θ)− 1
ζ2(Θ) , |Θ| > αo .

(3.60)

Boundary conditions. The continuity of the traction vector at the inhomogeneity-matrix interface implies
that

µ1 + µ2

µo
eω1−ω2ζ ′(Θ)|Θ=α−o

= ζ ′(Θ)|Θ=α+
o
, (3.61)

and
µ1 + µ2

µo
e2ω1 − 1 =

pi − po − µ2

µo
ζ(±αo)2. (3.62)

We assume that the lateral boundaries of the wedge are clamped, i.e.6

ζ(Θo) = 1, h(Θo) = Θo . (3.63)

6Note that as in Section 3.1, ζ(Θ) and h(Θ) are even and odd, respectively, and hence, ζ′(0) = 0 and h(0) = 0 .
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Figure 4: Left: The initial and deformed configurations of a wedge with the initial half-angle Θo = π
4

having an inclusion with

αo = π
8

and the pure dilatational eigenstrain distribution ω1 = ω2 = − 1
2

. Right: Variation of the physical components of the
Cauchy stress tensor versus Θ.

Using the boundary conditions ζ(Θ) and h(Θ) are determined. In order to determine the pressure constants,
i.e., pi and po, we assume that the resultant force acting on the circular boundary of the wedge vanishes.7

Using (3.46), the radial force per unit length of the cylinder in the Z-direction is simplified to read

Fr = 2µoRo

[
eω1+ω2

∫ αo

0

{
e−2ω1

(
µ1

µo
+
µ2

µo

)
ζ(Θ)− fo

µo

ln (Roζ(Θ))

ζ(Θ)
−
(
pi
µo
− µ2

µo

)
1

ζ(Θ)

}
dΘ

+

∫ Θo

αo

{
ζ(Θ)− fo

µo

ln (Roζ(Θ))

ζ(Θ)
− po
µoζ(Θ)

}
dΘ

]
. (3.64)

We proceed with solving the boundary-value problems (3.60) and (3.8) numerically. The numerical scheme that
we adopt is as follows: For a given fixed value of fo, initial values a and b for ζ(0) and ζ(αo) are guessed.
Imposing the boundary condition at Θ = 0 (ζ ′(0) = 0 and ζ(0) = a), ci1 is calculated. Using the boundary
conditions at Θ = αo, i.e., (3.61) and ζ(αo) = b, co1

is computed. Imposing boundary conditions ζ(Θo) = 1
and ζ(αo) = b, the ODE system (3.60) is solved in both the matrix and the inclusion regions. Comparing the
values of ζ(αo) and ζ(0) found by solving the ODEs in the matrix and the inclusion with b and a, respectively,
the corresponding errors are calculated. Iterations are carried out until the errors become smaller than a chosen
tolerance. Therefore, a function is constructed, which solves the boundary-value problem (3.60) for a given
value of fo. Now, an initial value for fo is guessed, and ζ(Θ) is calculated in its domain given this value by
employing the constructed function. Integrating (3.8), h(Θo) is found and its value is compared with Θo to
find the error. Iterations are carried out until the boundary condition h(Θo) = Θo is satisfied. This way, a, b,
and fo are calculated such that the errors are smaller than a given tolerance. Finally, using a guessed initial
value of pi (po) and (3.62), (3.64) is numerically integrated and an iterative scheme is used until Fr vanishes.
Therefore, pi (po) is computed, from which po (pi) is calculated using (3.62).

7Note that ζ(Θ) and h(Θ) are independent of the values of the pressure constants.
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Figure 5: Left: The initial and deformed configurations of a wedge with the initial half-angle Θo = π
4

having an inclusion with

αo = π
18

and the constant eigenstrain distribution ω1 = 1
2

and ω2 = − 1
2

. Right: Variation of the physical components of the
Cauchy stress tensor versus Θ.

The physical components of the Cauchy stress read

σ̂rr =

{
−fo ln(Rζ(Θ))− pi + (µ1 + µ2)

(
e−2ω2ζ ′(Θ)2 + e−2ω1ζ(Θ)2

)
+ µ2 , |Θ| ≤ αo ,

−fo ln(Rζ(Θ))− po + µo
(
ζ ′(Θ)2 + ζ(Θ)2

)
, |Θ| > αo ,

(3.65)

σ̂rθ =

{
(µ1+µ2)ζ′(Θ)

ζ(Θ) eω1−ω2 , |Θ| ≤ αo ,
µoζ
′(Θ)

ζ(Θ) , |Θ| > αo ,
(3.66)

σ̂θθ =

{
1

ζ(Θ)2

(
(µ1 + µ2) e2ω1 − ζ(Θ)2 (fo ln(Rζ(Θ)) + pi − µ2)

)
, |Θ| ≤ αo ,

1
ζ(Θ)2

(
µo − ζ(Θ)2 (fo ln(Rζ(Θ)) + po)

)
, |Θ| > αo ,

(3.67)

σ̂zz =

{
−fo ln(Rζ(Θ))− pi + µ2

(
e−2ω2ζ ′(Θ)2 + e−2ω1ζ(Θ)2 + e2ω1

ζ(Θ)2

)
+ µ1 , |Θ| ≤ αo ,

−fo ln(Rζ(Θ))− po + µo , |Θ| > αo ,
(3.68)

Remark 3.6. Note that σ̂rθ depends only on Θ. Moreover, the radial dependence of σ̂rr, σ̂θθ, and σ̂zz is linear
with respect to lnR.8

Numerical results. The deformation of the wedge and the variation of the stress components for various
eigenstrain distributions in the inhomogeneities with different elastic constants are examined and are presented
in Figures 8 to 12. A wedge containing an inhomogeneity stiffer than the matrix with positive eigenstrains such
that the circumferential eigenstrain is twice the radial one is shown in Figure 8. As expected all the radial
lines of the wedge displace outward, with the inhomogeneity expanded more than the matrix. Furthermore, on
the circular boundary σ̂rr is negative in the inhomogeneity, positive in the matrix, and discontinuous at the

8For the sake of simplicity, we consider this property and plot the stress components at R = Ro.
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Figure 6: Left: The initial and deformed configurations of a wedge with the initial half-angle Θo = π
4

having an inclusion with

αo = π
18

and the constant eigenstrain distribution ω1 = − 3
5

and ω2 = 2
5

. Right: Variation of the physical components of the
Cauchy stress tensor versus Θ. In this example, the deformation is non-unidirectional.

X

Ro

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Y

Ro

-1.5

-1

-0.5

0

0.5

1

1.5

Θo =
π
3
, αo =

π
18
, ω1 =1, ω2 =0 .

Deformed

Undeformed

−
π
3
≤ Θ ≤

π
3

-60 -40 -20 0 20 40 60

σ̂

µ

-4

-3

-2

-1

0

1

2

3

4

σ̂rr/µ
σ̂rθ/µ
σ̂θθ/µ

X

Ro

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Y

Ro

-1.5

-1

-0.5

0

0.5

1

1.5

Θo =
π
3
, αo =

π
18
, ω1 =1, ω2 =0 .

Deformed

Undeformed

−
π
3
≤ Θ ≤

π
3

-60 -40 -20 0 20 40 60

σ̂

µ

-4

-3

-2

-1

0

1

2

3

4

σ̂rr/µ
σ̂rθ/µ
σ̂θθ/µ
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having an inclusion with
αo = π
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and the constant eigenstrain distribution ω1 = 1 and ω2 = 0. Right: Variation of the physical components of the Cauchy
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Figure 8: Left: The initial and deformed configurations of a wedge with fixed lateral boundaries and the initial half-angle Θo = π
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having an inhomogenity with αo = π
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, µ1
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= 1, and the constant eigenstrain distribution ω1 = 1
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. ( fo
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=

−0.2761, pi
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= 3.1646). Right: Variation of the physical components of the Cauchy stress tensor versus Θ at R = Ro.

inhomogeneity-matrix interface. Note that σ̂θθ is negative almost everywhere on the circular boundary except
for some small regions close to the lateral boundaries.

On the other hand, Figure 9 depicts an inhomogeneity placed in a stiffer matrix with higher positive eigen-
strains such that the radial eigenstrain is twice the circumferential one. It is observed that σ̂θθ is positive on
the circular boundary. Moreover, σ̂θθ and σ̂rr are approximately uniform in the inhomogeneity. For a wedge
having an inhomogeneity stiffer than the matrix with negative circumferentially dominated eigenstrains, all the
radial filaments are contracted. In addition, σ̂rr and σ̂θθ are almost uniform, and σ̂rθ is almost zero in the
inhomogeneity (Figure 10).

Inhomogeneities with a purely radial and purely circumferential eigenstrain are described in Figures 11 and
12, respectively. For both cases, all the radial lines are elongated, with the inhomogeneity expanded and the
matrix shrunk in the circumferential direction. Interestingly, the circumferential and radial deformations are
more pronounced in purely radial and purely circumferential eigenstrain cases, respectively.9 Unlike wedges
with traction-free lateral boundaries for which purely circumferential eigenstrain does not induce any residual
stresses in the wedge, here residual stress is developed due to the purely circumferential eigenstrain because the
wedge can no longer move freely in the circumferential direction. Note that σ̂rr and σ̂θθ are almost uniform
in the inhomogeneity for the purely radial eigenstrain case, with σ̂rr undergoing a jump at the inhomogeneity-
matrix interface. For the purely circumferential eigenstrain case, however, the stress components exhibit a quite
different behavior in the inhomogeneity. For instance, σ̂rr remains continuous at the inhomogeneity-matrix
interface and does not tend to be uniform in the inhomogeneity.

9A similar observation was made for the wedge with traction-free lateral boundaries having an inclusion with a purely radial
eigenstrain (cf. Figure 7).
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3.3 Stress-free eigenstrain distributions in a wedge

In this section, we find those eigenstrain distributions that induce no residual stresses. For such eigenstrain dis-
tributions, the material manifold can be isometrically embedded into the ambient space, i.e, G = ϕ∗g.10 Hence,
a stress-free eigenstrain distribution corresponds to a material metric with vanishing Riemannian curvature for
a simply-connected body, e.g. a wedge. Curvature tensor has the following components

RABCD =
∂ΓADB
∂XC

− ∂ΓACB
∂XD

+ ΓACEΓEDB − ΓADEΓECB . (3.69)

The non-trivially non-zero components of the curvature tensor for the cylinder with the metric G (cf. (3.2) and
(2.8)) are

RΘ
ΘRR =−RΘ

RΘR =
e2(ωR(Θ)−ωΘ(Θ))

R2

[
−ω′Θ(Θ)ω′R(Θ) + ω′R(Θ)2 + ω′′R(Θ)

]
, (3.70)

RRRΘΘ =−RRΘRΘ = −ω′Θ(Θ)ω′R(Θ) + ω′R(Θ)2 + ω′′R(Θ). (3.71)

Therefore, in order for an eigenstrain distribution to be stress-free in a wedge, we need to solve the following
non-linear ordinary differential equation.

− ω′Θ(Θ)ω′R(Θ) + ω′R(Θ)2 + ω′′R(Θ) = 0. (3.72)

Using this ODE, given ωΘ(Θ), ωR(Θ) is expressed as

ωR(Θ) = c2 + ln

(
c1 +

∫ Θ

0

eωΘ(φ)dφ

)
. (3.73)

Remark 3.7. In the special case of ωR(Θ) = ωΘ(Θ), we have a linear solution (ωΘ(Θ) = c1Θ + c2) for the
stress-free eigenstrain distribution, where c1 and c2 are constants.

4 Conclusions

In this paper we studied the residual stress field generated by a circumferentially-symmetric distribution of
finite eigenstrains in an incompressible, isotropic wedge, assuming a specific class of deformations. Using a semi-
inverse method, we derived the governing equilibrium equations of the wedge for an arbitrary circumferentially-
symmetric distribution of eigenstrains. We solved two examples. In the first one, we considered an inclusion
with uniform eigenstrains in a neo-Hookean wedge with traction-free lateral boundaries and obtained exact
solutions for the residual stress and deformation fields. We observed that if the eigenstrain distribution is purely
circumferential, the pressure field remains continuous at the inclusion-matrix interface, and all the components
of the stress tensor are zero point-wise. Moreover, we observed that the deformation of the wedge fails to be
unidirectional for an inclusion with a negative radial and positive circumferential eigenstrians even for large
negative values of the radial eigenstrain. Furthermore, we found that the total wedge angle is reduced for any
positive values of pure dilatational eigenstrains. In the second example, we considered a neo-Hookean wedge
with clamped lateral boundaries having a symmetric Mooney-Rivlin inhomogeneity with uniform eigenstrains.
We examined several cases of eigenstrain distributions for different relative stiffnesses of the inhomogeneity
and the matrix. We observed that the circumferential and radial deformations are more pronounced in wedges
containing inhomogeneities with purely radial and purely circumferential eigenstrains. In addition, we noticed
that for a pure radial eigenstrain distribution, σ̂rr and σ̂θθ are almost uniform in the inhomgeneity, and σ̂rr has a
jump at the inhomogeneity-matrix interface. In contrast, for a pure circumferential eigenstrain distribution σ̂rr

and σ̂θθ are nonuniform in the inhomogeneity, with σ̂rr being continuous at the inhomogeneity-matrix interface.
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